Preservice teacher preparation programs and inservice professional development enhance science teaching self-efficacy. Research has shown that elementary teachers often have low self-efficacy for teaching science and engineering. However, there is less evidence surrounding engineering teaching self-efficacy. In this systematic review of literature, we explored the research question: What does the existing literature on self-efficacy reveal about fostering elementary teachers’ engineering teaching self-efficacy? We (1) synthesize the existing research on engineering teaching self-efficacy and (2) describe trends in research and uncover gaps that exist, including recommendations for future research. Among the 117 articles included in our full systematic review of science and engineering teaching self-efficacy, only 13 empirical studies focused specifically on engineering teaching self-efficacy. With a dearth of studies in both preservice and inservice contexts, there is a need for additional research on engineering teaching self-efficacy. In particular, longitudinal studies that track change over time and measure lasting effects of interventions. Further, detailed explorations of the factors that impact engineering teaching self-efficacy across multiple contexts are needed. Findings from these studies will help STEM educators to inform the design of preservice teacher education programs as well as inservice professional development opportunities. 
                        more » 
                        « less   
                    
                            
                            Inservice Elementary Teachers’ Science and Engineering Teaching Self-Efficacy: A Synthesis of the Literature
                        
                    
    
            Elementary teachers often have low self-efficacy for teaching science and engineering, and a range of professional development experiences have been designed to support teaching self-efficacy. Out of 117 total studies from 2010-2021 included in our systematic review, 22 focused specifically on inservice elementary teachers’ science and engineering teaching self-efficacy. In this presentation, we synthesize this existing research to identify trends in the literature. Our findings reveal that while existing research suggests that professional development opportunities can support elementary teachers’ science and engineering teaching self-efficacy, significant gaps in the literature remain. It is unclear why some professional development experiences support improved self-efficacy while others do not, and it is difficult to disentangle the effects of the many factors that may relate to self-efficacy within these studies. Recommendations for future research are described. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2151056
- PAR ID:
- 10415446
- Date Published:
- Journal Name:
- National Association for Research in Science Teaching
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Prekindergarten to 12th-grade teachers of computer science (CS) face many challenges, including isolation, limited CS professional development resources, and low levels of CS teaching self-efficacy that could be mitigated through communities of practice (CoPs). This study used survey data from 420 PK–12 CS teacher members of a virtual CoP, CS for All Teachers, to examine the needs of these teachers and how CS teaching self-efficacy, community engagement, and sharing behaviors vary by teachers’ instructional experiences and school levels taught. Results show that CS teachers primarily join the CoP to gain high-quality pedagogical, assessment, and instructional resources. The study also found that teachers with more CS teaching experience have higher levels of self-efficacy and are more likely to share resources than teachers with less CS teaching experience. Moreover, teachers who instruct students at higher grade levels (middle and high school) have higher levels of CS teaching self-efficacy than do teachers who instruct lower grade levels (elementary school). These results suggest that CoPs can help CS teachers expand their professional networks, gain more professional development resources, and increase CS teaching self-efficacy by creating personalized experiences that consider teaching experience and grade levels taught when guiding teachers to relevant content. This study lays the foundation for future explorations of how CS education–focused CoPs could support the expansion of CS education in PK–12 schools.more » « less
- 
            Self-efficacy is a topic of great interest in elementary preservice and inservice teacher education, considering that elementary teachers often have low science and engineering teaching self-efficacy. In this systematic review, we synthesize existing research to reveal trends and uncover existing gaps, including recommendations for future research. Out of 117, we found 84 articles studied preservice, 31 inservice and two articles studied both preservice/inservice teachers’ self-efficacy. Findings from thematic analysis indicate that the diversity of teacher education programs, both across the United States and globally, offers a rich context for considering a range of programmatic features that impact elementary teachers’ science and engineering teaching self-efficacy. Implications for future research and practice in multiple contexts across teacher preparation programs are discussed.more » « less
- 
            null (Ed.)K-12 teachers serve a critical role in their students’ development of interest in engineering, especially as engineering content is emphasized in curriculum standards. However, teachers may not be comfortable teaching engineering in their classrooms as it can require a different set of skills from which they are trained. Professional development activities focused on engineering content can help teachers feel more comfortable teaching the subject in their classrooms and can increase their knowledge of engineering and thus their engineering teaching self-efficacy. There are many different types of professional development activities teachers might experience, each one with a set of established best practices. VT PEERS (Virginia Tech Partnering with Educators and Engineers in Rural Communities) is a program designed to provide recurrent hands-on engineering activities to middle school students in or near rural Appalachia. The project partners middle school teachers, university affiliates, and local industry partners throughout the state region to develop and implement engineering activities that align with state defined standards of learning (SOLs). Throughout this partnership, teachers co-facilitate engineering activities in their classrooms throughout the year with the other partners, and teachers have the opportunity to participate in a two-day collaborative workshop every year. VT PEERS held a workshop during the summer of 2019, after the second year of the partnership, to discuss the successes and challenges experienced throughout the program. Three focus groups, one for each grade level involved (grades 6-8), were held during the summit for teachers and industry partners to discuss their experiences. None of the teachers involved in the partnership have formal training in engineering. The transcripts of these focus groups were the focus of the exploratory qualitative data analyses to answer the following research question: How do middle-school teachers develop teaching engineering self-efficacy through professional development activities? Deductive coding of the focus group transcripts was completed using the four sources of self-efficacy: mastery experience, vicarious experience, verbal persuasion and physiological states. The analysis revealed that vicarious experiences can be particularly valuable to increasing teachers’ teaching engineering self-efficacy. For example, teachers valued the ability to play the role of a student in an engineering lesson and being able to share ideas about teaching engineering lessons with other teachers. This information can be useful to develop engineering-focused professional development activities for teachers. Additionally, as teachers gather information from their teaching engineering vicarious experiences, they can inform their own teaching practices and practice reflective teaching as they teach lessons.more » « less
- 
            In order to create professional development experiences, curriculum materials, and policies that support elementary school teachers to embed computational thinking (CT) in their teaching, researchers and teacher educators must under- stand ways teachers see CT as connecting to their classroom practices. Taking the viewpoint that teachers’ initial ideas about CT can serve as useful resources on which to build ed- ucational experiences, we interviewed 12 elementary school teachers to probe their understanding of six components of CT (abstraction, algorithmic thinking, automation, debug- ging, decomposition, and generalization) and how those com- ponents relate to their math and science teaching. Results suggested that teachers saw stronger connections between CT and their mathematics instruction than between CT and their science instruction. We also found that teachers draw upon their existing knowledge of CT-related terminology to make connections to their math and science instruction that could be leveraged in professional development. Teachers were, however, concerned about bringing CT into teaching due to limited class time and the difficulties of addressing high level CT in developmentally appropriate ways. We discuss these results and their implications future research and the design of professional development, sharing examples of how we used teachers’ initial ideas as the foundation of a workshop introducing them to computational thinking.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    