skip to main content


Title: Water and soil management strategies and the introduction of wheat and barley to northern China: an isotopic analysis of cultivation on the Loess Plateau
ABSTRACT Studies of ‘food globalisation’ have traced the dispersal of cereals across prehistoric Eurasia. The degree to which these crops were accompanied by knowledge of soil and water preparation is less well known, however. The authors use stable isotope and archaeobotanical analyses to trace long-term trends in cultivation practices on the Loess Plateau (6000 BC–AD 1900). The results indicate that ancient farmers cultivated grains originating in South-west Asia and used distinct strategies for different species. Barley was integrated into pre-existing practices, while wheat was grown using novel soil and water management strategies. These distinct approaches suggest that the spread of prehistoric crops and knowledge about them varied by local context.  more » « less
Award ID(s):
2052932
NSF-PAR ID:
10415548
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Antiquity
Volume:
96
Issue:
390
ISSN:
0003-598X
Page Range / eLocation ID:
1478 to 1494
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Michael Kaiser (Ed.)
    By influencing soil organic carbon (SOC), cover crops play a key role in shaping soil health and hence the system's long‐term sustainability. However, the magnitude by which cover crops impacts SOC depends on multiple factors, including soil type, climate, crop rotation, tillage type, cover crop growth, and years under management. To elucidate how these multiple factors influence the relative impact of cover crops on SOC, we conducted a meta‐analysis on the impacts of cover crops within rotations that included corn (Zea maysL.) on SOC accumulation. Information on climatic conditions, soil characteristics, management, and cover crop performance was extracted, resulting in 198 paired comparisons from 61 peer‐reviewed studies. Over the course of each study, cover crops on average increased SOC by 7.3% (95% CI, 4.9%–9.6%). Furthermore, the impact of cover crop–induced increases in percent change SOC was evaluated across soil textures, cover crop types, crop rotations, biomass amounts, cover crop durations, tillage practices, and climatic zones. Our results suggest that current cover crop–based corn production systems are sequestering 5.5 million Mg of SOC per year in the United States and have the potential to sequester 175 million Mg SOC per year globally. These findings can be used to improve carbon footprint calculations and develop science‐based policy recommendations. Taken altogether, cover cropping is a promising strategy to sequester atmospheric C and hence make corn production systems more resilient to changing climates.

     
    more » « less
  2. Abstract

    Biofuel crops, including annuals such as maize (Zea maysL.), soybean [Glycine max(L.) Merr.], and canola (Brassica napusL.), as well as high‐biomass perennial grasses such as miscanthus (Miscanthus×giganteusJ.M. Greef & Deuter ex Hodkinson & Renvoiz), are candidates for sustainable alternative energy sources. However, large‐scale conversion of croplands to perennial biofuel crops could have substantial impacts on regional water, nutrient, and C cycles due to the longer growing seasons and differences in rooting systems compared with most annual crops. However, due to the limited tools available to nondestructively study the spatiotemporal patterns of root water uptake in situ at field scales, these differences in crop water use are not well known. Geophysical imaging tools such as electrical resistivity (ER) reveal changes in water content in the soil profile. In this study, we demonstrate the use of a novel coupled hydrogeophysical approach with both time domain reflectometry soil water content and ER measurements to compare root water uptake and soil properties of an annual crop rotation with the perennial grass miscanthus, across three growing seasons (2009–2011) in southwest Michigan, USA. We estimated maximum root depths to be between 1.2 and 2.2 m, with the vertical distribution of roots being notably deeper in 2009 relative to 2010 and 2011, likely due to the drought conditions during that first year. Modeled cumulative ET of both crops was underestimated (2–34%) relative to estimates obtained from soil water drawdown in prior studies but was found to be greater in the perennial grass than the annual crops, despite shallower modeled rooting depths in 2010 and 2011.

     
    more » « less
  3. Abstract

    Hydrologic modeling was used to estimate potential changes in nutrients, suspended sediment, and streamflow in various biomass production scenarios with conservation practices under different landscape designs. Two major corn and soybean croplands were selected for study: the South Fork of the Iowa River watershed and the headwater of the Raccoon River watershed. A physically based model, the Soil and Water Assessment Tool, was used to simulate hydrology and water quality under different scenarios with conservation practices and biomass production. Scenarios are based on conservation practices and biomass production; riparian buffer (RB), saturated buffer, and grassed waterways; various stover harvest rates of 30%, 45%, and 70% with and without winter cover crops; and conversion of marginal land to switchgrass. Conservation practices and landscape design with different biomass feedstocks were shown to significantly improve water quality while supporting sustainable biomass production. Model results for nitrogen, phosphorus, and suspended sediments were analyzed temporally at spatial scales that varied from hydrologic response units to the entire watershed. With conservation practices, water quality could potentially improve by reducing nitrogen loads by up to 20%–30% (stover harvest with cover crop), phosphorus loads by 20%–40% (RB), and sediment loads by 30%–70% (stover harvest with cover crop and RB).

     
    more » « less
  4. null (Ed.)
    ABSTRACT Cellulosic bioenergy crops, like switchgrass (Panicum virgatum), have potential for growth on lands unsuitable for food production coupled with potential for climate mitigation. Sustainability of these systems lies in identifying conditions that promote high biomass yields on marginal lands under low-input agricultural practices. Associative nitrogen fixation (ANF) is a potentially important nitrogen (N) source for these crops, yet ANF contributions to plant N, especially under fertilizer N addition are unclear. In this study, we assess structure (nifH) and function (ANF) of switchgrass root-associated diazotrophic communities to long-term and short-term N additions using soil from three marginal land sites. ANF rates were variable and often unexpectedly high, sometimes 10× greater than reported in the literature, and did not respond in repeatable ways to long-term or short-term N. We found few impacts of N addition on root-associated diazotrophic community structure or membership. Instead, we found a very consistent root-associated diazotrophic community even though switchgrass seeds were germinated in soil from field sites with distinct diazotrophic communities. Ultimately, this work demonstrates that root-associated diazotrophic communities have the potential to contribute to switchgrass N demands, independent of N addition, and this may be driven by selection of the diazotrophic community by switchgrass roots. 
    more » « less
  5. Human-induced deforestation and soil erosion were environmental stressors for the ancient Maya of Mesoamerica. Furthermore, intense, periodic droughts during the Terminal Classic Period, ca. Common Era 830 to 950, have been documented from lake sediment cores and speleothems. Today, lakes worldwide that are surrounded by dense human settlement and intense riparian land use often develop algae/cyanobacteria blooms that can compromise water quality by depleting oxygen and producing toxins. Such environmental impacts have rarely been explored in the context of ancient Maya settlement. We measured nutrients, biomarkers for cyanobacteria, and the cyanotoxin microcystin in a sediment core from Lake Amatitlán, highland Guatemala, which spans the last ∼2,100 y. The lake is currently hypereutrophic and characterized by high cyanotoxin concentrations from persistent blooms of the cyanobacterium Microcystis aeruginosa . Our paleolimnological data show that harmful cyanobacteria blooms and cyanotoxin production occurred during periods of ancient Maya occupation. Highest prehistoric concentrations of cyanotoxins in the sediment coincided with alterations of the water system in the Maya city of Kaminaljuyú, and changes in nutrient stoichiometry and maximum cyanobacteria abundance were coeval with times of greatest ancient human populations in the watershed. These prehistoric episodes of cyanobacteria proliferation and cyanotoxin production rivaled modern conditions in the lake, with respect to both bloom magnitude and toxicity. This suggests that pre-Columbian Maya occupation of the Lake Amatitlán watershed negatively impacted water potability. Prehistoric cultural eutrophication indicates that human-driven nutrient enrichment of water bodies is not an exclusively modern phenomenon and may well have been a stressor for the ancient Maya. 
    more » « less