skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Heterogenous controls on lake color and trends across the high-elevation U.S. Rocky Mountain region
Abstract Global change may contribute to ecological changes in high-elevation lakes and reservoirs, but a lack of data makes it difficult to evaluate spatiotemporal patterns. Remote sensing imagery can provide more complete records to evaluate whether consistent changes across a broad geographic region are occurring. We used Landsat surface reflectance data to evaluate spatial patterns of contemporary lake color (2010–2020) in 940 lakes in the U.S. Rocky Mountains, a historically understudied area for lake water quality. Intuitively, we found that most of the lakes in the region are blue (66%) and were found in steep-sided watersheds (>22.5°) or alternatively were relatively deep (>4.5 m) with mean annual air temperature (MAAT) <4.5°C. Most green/brown lakes were found in relatively shallow sloped watersheds with MAAT ⩾4.5°C. We extended the analysis of contemporary lake color to evaluate changes in color from 1984 to 2020 for a subset of lakes with the most complete time series ( n = 527). We found limited evidence of lakes shifting from blue to green states, but rather, 55% of the lakes had no trend in lake color. Surprisingly, where lake color was changing, 32% of lakes were trending toward bluer wavelengths, and only 13% shifted toward greener wavelengths. Lakes and reservoirs with the most substantial shifts toward blue wavelengths tended to be in urbanized, human population centers at relatively lower elevations. In contrast, lakes that shifted to greener wavelengths did not relate clearly to any lake or landscape features that we evaluated, though declining winter precipitation and warming summer and fall temperatures may play a role in some systems. Collectively, these results suggest that the interactions between local landscape factors and broader climatic changes can result in heterogeneous, context-dependent changes in lake color.  more » « less
Award ID(s):
2019528
PAR ID:
10415756
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Research Letters
Volume:
17
Issue:
10
ISSN:
1748-9326
Page Range / eLocation ID:
104041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wildfires are becoming larger and more frequent across much of the United States due to anthropogenic climate change. No studies, however, have assessed fire prevalence in lake watersheds at broad spatial and temporal scales, and thus it is unknown whether wildfires threaten lakes and reservoirs (hereafter, lakes) of the United States. We show that fire activity has increased in lake watersheds across the continental United States from 1984 to 2015, particularly since 2005. Lakes have experienced the greatest fire activity in the western United States, Southern Great Plains, and Florida. Despite over 30 years of increasing fire exposure, fire effects on fresh waters have not been well studied; previous research has generally focused on streams, and most of the limited lake‐fire research has been conducted in boreal landscapes. We therefore propose a conceptual model of how fire may influence the physical, chemical, and biological properties of lake ecosystems by synthesizing the best available science from terrestrial, aquatic, fire, and landscape ecology. This model also highlights emerging research priorities and provides a starting point to help land and lake managers anticipate potential effects of fire on ecosystem services provided by fresh waters and their watersheds.

     
    more » « less
  2. This data package, LAGOS-US LOCUS v1.0, is one of the core data modules of the LAGOS-US platform that provides an extensible research-ready platform to study the 479,950 lakes and reservoirs larger than or equal to 1 ha in the conterminous US (48 states plus the District of Columbia). This data module contains information on the location, identifiers, and physical characteristics of lakes and their watersheds. The characteristics in this module include: variables that can be obtained from GIS data such as location and geometry; variables that can be derived using GIS processing such as lake watersheds and their geometry, lake glaciation history, and lake connectivity; and commonly used identifiers from GIS and other data products useful for linking with LAGOS-US. LOCUS is based on a snapshot of the high-resolution National Hydrography Dataset product available at the initiation of the project that provided the basis for locating, identifying, and characterizing the geometry of all lakes in LAGOS-US. The database design that supports the LAGOS-US research platform was created based on several important design features. Lakes are the fundamental unit of consideration, all lakes in the spatial extent must be represented (above a minimum size) and most information is connected to individual lakes. The design is modular, interoperable (the modules can be used with each other), and extensible (future database modules can be developed and used in the LAGOS-US research platform by others). Users are encouraged to use the other 2 core data modules that are part of the LAGOS-US platform: GEO (which includes geospatial ecological context at multiple spatial and temporal scales for lakes and their watersheds) and LIMNO (in situ lake surface-water physical, chemical, and biological measurements through time) that are each found in their own data packages. 
    more » « less
  3. Oligotrophic mountain lakes act as sensitive indicators of landscape-scale changes in mountain regions due to their low nutrient concentration and remote, relatively undisturbed watersheds. Recent research shows that phosphorus (P) concentrations are increasing in mountain lakes around the world, creating more mesotrophic states and altering lake ecosystem structure and function. The relative importance of atmospheric deposition and climate-driven changes to local biogeochemistry in driving these shifts is not well established. In this study, we test whether increasing temperatures in watershed soils may be contributing to the observed increases in mountain lake P loading. Specifically, we test whether higher soil temperatures increase P mobilization from mountain soils by accelerating the rate of geochemical weathering and soil organic matter decomposition. We used paired soil incubation (lab) and soil transplant (field) experiments with mountain soils from around the western United States to test the effects of warming on rain-leachable P concentration, soil P mobilization, and soil respiration. Our results show that while higher temperature can increase soil P mobilization, low soil moisture can limit the effects of warming in some situations. Soils with lower bulk densities, higher pH, lower aluminum oxide contents, and lower ratios of carbon to nitrogen had much higher rain-leachable P concentration across all sites and experimental treatments. Together, these results suggest that mountain watersheds with high-P soils and relatively high soil moisture could have the largest increases in P mobilization with warming. Consequently, lakes and streams in such watersheds could become especially susceptible to soil-driven eutrophication as temperatures rise. 
    more » « less
  4. The LAGOS-US GEO data package is one of the core data modules of LAGOS-US, an extensible research-ready platform designed to study the 479,950 lakes and reservoirs larger than or equal to 1 ha in the conterminous US (48 states plus the District of Columbia). The GEO module contains data on the geospatial and temporal ecological setting (e.g., land use, terrain, soils, climate, hydrology, atmospheric deposition, and human influence) quantified at multiple spatial divisions (e.g., equidistant buffers around lakes, watersheds, hydrologic basins, political boundaries, and ecoregions) relevant to the LAGOS-US lake population defined in the LAGOS-US LOCUS module. The database design that supports the LAGOS-US research platform was created based on several important design features: lakes are the fundamental unit of consideration, all lakes in the spatial extent above the minimum size must be represented, and most information is connected to individual lakes. The design is modular, interoperable (the modules can be used with each other), and extensible (future database modules can be developed and used in the LAGOS-US research platform by others). Users are encouraged to use the other two core data modules that are part of the LAGOS-US platform: LOCUS (location, identifiers, and physical characteristics of lakes and their watersheds) and LIMNO (in situ lake physical, chemical, and biological measurements through time) that are each found in their own data packages. 
    more » « less
  5. Abstract. Lakes in the Arctic are important reservoirs of heat withmuch lower albedo in summer and greater absorption of solar radiation thansurrounding tundra vegetation. In the winter, lakes that do not freeze totheir bed have a mean annual bed temperature >0 ∘C inan otherwise frozen landscape. Under climate warming scenarios, we expectArctic lakes to accelerate thawing of underlying permafrost due to warmingwater temperatures in the summer and winter. Previous studies of Arcticlakes have focused on ice cover and thickness, the ice decay process,catchment hydrology, lake water balance, and eddy covariance measurements,but little work has been done in the Arctic to model lake heat balance. Weapplied the LAKE 2.0 model to simulate water temperatures in three Arcticlakes in northern Alaska over several years and tested the sensitivity ofthe model to several perturbations of input meteorological variables(precipitation, shortwave radiation, and air temperature) and several modelparameters (water vertical resolution, sediment vertical resolution, depthof soil column, and temporal resolution). The LAKE 2.0 model is aone-dimensional model that explicitly solves vertical profiles of waterstate variables on a grid. We used a combination of meteorological data fromlocal and remote weather stations, as well as data derived from remotesensing, to drive the model. We validated modeled water temperatures withdata of observed lake water temperatures at several depths over severalyears for each lake. Our validation of the LAKE 2.0 model is a necessarystep toward modeling changes in Arctic lake ice regimes, lake heat balance,and thermal interactions with permafrost. The sensitivity analysis shows usthat lake water temperature is not highly sensitive to small changes in airtemperature or precipitation, while changes in shortwave radiation and largechanges in precipitation produced larger effects. Snow depth and lake icestrongly affect water temperatures during the frozen season, which dominatesthe annual thermal regime of Arctic lakes. These findings suggest thatreductions in lake ice thickness and duration could lead to more heatstorage by lakes and enhanced permafrost degradation. 
    more » « less