skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heterogenous controls on lake color and trends across the high-elevation U.S. Rocky Mountain region
Abstract Global change may contribute to ecological changes in high-elevation lakes and reservoirs, but a lack of data makes it difficult to evaluate spatiotemporal patterns. Remote sensing imagery can provide more complete records to evaluate whether consistent changes across a broad geographic region are occurring. We used Landsat surface reflectance data to evaluate spatial patterns of contemporary lake color (2010–2020) in 940 lakes in the U.S. Rocky Mountains, a historically understudied area for lake water quality. Intuitively, we found that most of the lakes in the region are blue (66%) and were found in steep-sided watersheds (>22.5°) or alternatively were relatively deep (>4.5 m) with mean annual air temperature (MAAT) <4.5°C. Most green/brown lakes were found in relatively shallow sloped watersheds with MAAT ⩾4.5°C. We extended the analysis of contemporary lake color to evaluate changes in color from 1984 to 2020 for a subset of lakes with the most complete time series ( n = 527). We found limited evidence of lakes shifting from blue to green states, but rather, 55% of the lakes had no trend in lake color. Surprisingly, where lake color was changing, 32% of lakes were trending toward bluer wavelengths, and only 13% shifted toward greener wavelengths. Lakes and reservoirs with the most substantial shifts toward blue wavelengths tended to be in urbanized, human population centers at relatively lower elevations. In contrast, lakes that shifted to greener wavelengths did not relate clearly to any lake or landscape features that we evaluated, though declining winter precipitation and warming summer and fall temperatures may play a role in some systems. Collectively, these results suggest that the interactions between local landscape factors and broader climatic changes can result in heterogeneous, context-dependent changes in lake color.  more » « less
Award ID(s):
2019528
PAR ID:
10415756
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Research Letters
Volume:
17
Issue:
10
ISSN:
1748-9326
Page Range / eLocation ID:
104041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wildfires are becoming larger and more frequent across much of the United States due to anthropogenic climate change. No studies, however, have assessed fire prevalence in lake watersheds at broad spatial and temporal scales, and thus it is unknown whether wildfires threaten lakes and reservoirs (hereafter, lakes) of the United States. We show that fire activity has increased in lake watersheds across the continental United States from 1984 to 2015, particularly since 2005. Lakes have experienced the greatest fire activity in the western United States, Southern Great Plains, and Florida. Despite over 30 years of increasing fire exposure, fire effects on fresh waters have not been well studied; previous research has generally focused on streams, and most of the limited lake‐fire research has been conducted in boreal landscapes. We therefore propose a conceptual model of how fire may influence the physical, chemical, and biological properties of lake ecosystems by synthesizing the best available science from terrestrial, aquatic, fire, and landscape ecology. This model also highlights emerging research priorities and provides a starting point to help land and lake managers anticipate potential effects of fire on ecosystem services provided by fresh waters and their watersheds. 
    more » « less
  2. This data package, LAGOS-US LOCUS v1.0, is one of the core data modules of the LAGOS-US platform that provides an extensible research-ready platform to study the 479,950 lakes and reservoirs larger than or equal to 1 ha in the conterminous US (48 states plus the District of Columbia). This data module contains information on the location, identifiers, and physical characteristics of lakes and their watersheds. The characteristics in this module include: variables that can be obtained from GIS data such as location and geometry; variables that can be derived using GIS processing such as lake watersheds and their geometry, lake glaciation history, and lake connectivity; and commonly used identifiers from GIS and other data products useful for linking with LAGOS-US. LOCUS is based on a snapshot of the high-resolution National Hydrography Dataset product available at the initiation of the project that provided the basis for locating, identifying, and characterizing the geometry of all lakes in LAGOS-US. The database design that supports the LAGOS-US research platform was created based on several important design features. Lakes are the fundamental unit of consideration, all lakes in the spatial extent must be represented (above a minimum size) and most information is connected to individual lakes. The design is modular, interoperable (the modules can be used with each other), and extensible (future database modules can be developed and used in the LAGOS-US research platform by others). Users are encouraged to use the other 2 core data modules that are part of the LAGOS-US platform: GEO (which includes geospatial ecological context at multiple spatial and temporal scales for lakes and their watersheds) and LIMNO (in situ lake surface-water physical, chemical, and biological measurements through time) that are each found in their own data packages. 
    more » « less
  3. Oligotrophic mountain lakes act as sensitive indicators of landscape-scale changes in mountain regions due to their low nutrient concentration and remote, relatively undisturbed watersheds. Recent research shows that phosphorus (P) concentrations are increasing in mountain lakes around the world, creating more mesotrophic states and altering lake ecosystem structure and function. The relative importance of atmospheric deposition and climate-driven changes to local biogeochemistry in driving these shifts is not well established. In this study, we test whether increasing temperatures in watershed soils may be contributing to the observed increases in mountain lake P loading. Specifically, we test whether higher soil temperatures increase P mobilization from mountain soils by accelerating the rate of geochemical weathering and soil organic matter decomposition. We used paired soil incubation (lab) and soil transplant (field) experiments with mountain soils from around the western United States to test the effects of warming on rain-leachable P concentration, soil P mobilization, and soil respiration. Our results show that while higher temperature can increase soil P mobilization, low soil moisture can limit the effects of warming in some situations. Soils with lower bulk densities, higher pH, lower aluminum oxide contents, and lower ratios of carbon to nitrogen had much higher rain-leachable P concentration across all sites and experimental treatments. Together, these results suggest that mountain watersheds with high-P soils and relatively high soil moisture could have the largest increases in P mobilization with warming. Consequently, lakes and streams in such watersheds could become especially susceptible to soil-driven eutrophication as temperatures rise. 
    more » « less
  4. Abstract Local and regional‐scaled studies point to the important role of lake type (natural lakes vs. reservoirs), surface water connectivity, and ecological context (multi‐scaled natural settings and human factors) in mediating lake responses to disturbances like drought. However, we lack an understanding at the macroscale that incorporates multiple scales (lake, watershed, region) and a variety of ecological contexts. Therefore, we used data from the LAGOS‐US research platform and applied a local water year timeframe to 62,927 US natural lakes and reservoirs across 17 ecoregions to examine how chlorophyllaresponds to drought across various ecological contexts. We evaluated chlorophyllachanges relative to each lake's baseline and drought year. Drought led to lower and higher chlorophyllain 18% and 20%, respectively, of lakes (both natural lakes and reservoirs included). Natural lakes had higher magnitudes of change and probabilities of increasing chlorophylladuring droughts than reservoirs, and these differences were particularly pronounced in isolated and highly‐connected lakes. Drought responses were also related to long‐term average lake chlorophyllain complex ways, with a positive correlation in less productive lakes and a negative correlation in more productive lakes, and more pronounced drought responses in higher‐productivity lakes than lower‐productivity lakes. Thus, lake chlorophyll responses to drought are related to interactions between lake type and surface connectivity, long‐term average chlorophylla, and many other multi‐scaled ecological factors (e.g., soil erodibility, minimum air temperature). These results reinforce the importance of integrating multi‐scaled ecological context to determine and predict the impacts of global changes on lakes. 
    more » « less
  5. This dataset includes chlorophyll-a concentrations, periphyton biomass estimates, water quality measurements, and qualitative observations from a large-scale mesocosm experiment conducted in the Green Lakes Watershed, Colorado. The experiment was designed to test how earlier lake ice-off and increased dissolved organic material (DOM), associated with terrestrial plant encroachment in alpine watersheds, interactively influence aquatic food webs. In fall 2019, twenty 2600L “megacosms” were established at Sandy Corner (3300 m ASL; 40.042289, -105.584006), left to fill with snowmelt, and maintained throughout the 2020 open water season. The experiment followed a 2 × 2 randomized block design manipulating ice-off timing (via black vs. beige tank coloration) and DOM inputs (presence/absence of willow leaf packs), with five replicates per treatment. All tanks were seeded with sediments and zooplankton from both alpine and montane lakes (Green Lake 1 and Green Lake 4), and instrumented with thermistors recording surface and hypolimnion temperature every two hours year-round. Periphyton growth was monitored using clay tiles, sampled across five time points. Chlorophyll-a concentrations were extracted from filtered water samples and analyzed spectrophotometrically. Periphyton biomass was estimated via ash-free dry mass (AFDM) determinations, based on the mass lost on combustion of material scraped from tiles. Water quality was measured 1–2 times weekly using a YSI ProPlus multiprobe and Li-Cor quantum sensor, and snow/ice cover was qualitatively assessed monthly during winter. 
    more » « less