- Award ID(s):
- 2203581
- PAR ID:
- 10415804
- Date Published:
- Journal Name:
- Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, PMLR
- Page Range / eLocation ID:
- 118-128
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Reconstructing Turbulent Flows Using Physics-Aware Spatio-Temporal Dynamics and Test-Time RefinementSimulating turbulence is critical for many societally important applications in aerospace engineering, environmental science, the energy industry, and biomedicine. Large eddy simulation (LES) has been widely used as an alternative to direct numerical simulation (DNS) for simulating turbulent flows due to its reduced computational cost. However, LES is unable to capture all of the scales of turbulent transport accurately. Reconstructing DNS from low-resolution LES is critical for many scientific and engineering disciplines, but it poses many challenges to existing super-resolution methods due to the spatio-temporal complexity of turbulent flows. In this work, we propose a new physics-guided neural network for reconstructing the sequential DNS from low-resolution LES data. The proposed method leverages the partial differential equation that underlies the flow dynamics in the design of spatio-temporal model architecture. A degradation-based refinement method is also developed to enforce physical constraints and further reduce the accumulated reconstruction errors over long periods. The results on two different types of turbulent flow data confirm the superiority of the proposed method in reconstructing the high-resolution DNS data and preserving the physical characteristics of flow transport.more » « less
-
Accurate simulation of turbulent flows is of crucial importance in many branches of science and engineering. Direct numerical simulation (DNS) provides the highest fidelity means of capturing all intricate physics of turbulent transport. However, the method is computationally expensive because of the wide range of turbulence scales that must be accounted for in such simulations. Large eddy simulation (LES) provides an alternative. In such simulations, the large scales of the flow are resolved, and the effects of small scales are modelled. Reconstruction of the DNS field from the low-resolution LES is needed for a wide variety of applications. Thus the construction of super-resolution methodologies that can provide this reconstruction has become an area of active research. In this work, a new physics-guided neural network is developed for such a reconstruction. The method leverages the partial differential equation that underlies the flow dynamics in the design of spatio-temporal model architecture. A degradation-based refinement method is also developed to enforce physical constraints and to further reduce the accumulated reconstruction errors over long periods. Detailed DNS data on two turbulent flow configurations are used to assess the performance of the model.
-
Near-wall flow simulation remains a central challenge in aerodynamics modelling: Reynolds-averaged Navier–Stokes predictions of separated flows are often inaccurate, and large-eddy simulation (LES) can require prohibitively small near-wall mesh sizes. A deep learning (DL) closure model for LES is developed by introducing untrained neural networks into the governing equations and training in situ for incompressible flows around rectangular prisms at moderate Reynolds numbers. The DL-LES models are trained using adjoint partial differential equation (PDE) optimization methods to match, as closely as possible, direct numerical simulation (DNS) data. They are then evaluated out-of-sample – for aspect ratios, Reynolds numbers and bluff-body geometries not included in the training data – and compared with standard LES models. The DL-LES models outperform these models and are able to achieve accurate LES predictions on a relatively coarse mesh (downsampled from the DNS mesh by factors of four or eight in each Cartesian direction). We study the accuracy of the DL-LES model for predicting the drag coefficient, near-wall and far-field mean flow, and resolved Reynolds stress. A crucial challenge is that the LES quantities of interest are the steady-state flow statistics; for example, a time-averaged velocity component $\langle {u}_i\rangle (x) = \lim _{t \rightarrow \infty } ({1}/{t}) \int _0^t u_i(s,x)\, {\rm d}s$ . Calculating the steady-state flow statistics therefore requires simulating the DL-LES equations over a large number of flow times through the domain. It is a non-trivial question whether an unsteady PDE model with a functional form defined by a deep neural network can remain stable and accurate on $t \in [0, \infty )$ , especially when trained over comparatively short time intervals. Our results demonstrate that the DL-LES models are accurate and stable over long time horizons, which enables the estimation of the steady-state mean velocity, fluctuations and drag coefficient of turbulent flows around bluff bodies relevant to aerodynamics applications.more » « less
-
Abstract Tissue dynamics play critical roles in many physiological functions and provide important metrics for clinical diagnosis. Capturing real-time high-resolution 3D images of tissue dynamics, however, remains a challenge. This study presents a hybrid physics-informed neural network algorithm that infers 3D flow-induced tissue dynamics and other physical quantities from sparse 2D images. The algorithm combines a recurrent neural network model of soft tissue with a differentiable fluid solver, leveraging prior knowledge in solid mechanics to project the governing equation on a discrete eigen space. The algorithm uses a Long-short-term memory-based recurrent encoder-decoder connected with a fully connected neural network to capture the temporal dependence of flow-structure-interaction. The effectiveness and merit of the proposed algorithm is demonstrated on synthetic data from a canine vocal fold model and experimental data from excised pigeon syringes. The results showed that the algorithm accurately reconstructs 3D vocal dynamics, aerodynamics, and acoustics from sparse 2D vibration profiles.
-
Taylor and Francis (Ed.)A new computational methodology, termed ‘PeleLM-FDF’ is developed and utilised for high fidelity large eddy simulation (LES) of complex turbulent combustion systems. This methodology is constructed via a hybrid scheme combining the Eulerian PeleLM base flow solver with the Lagrangian Monte Carlo simulator of the filtered density func- tion (FDF) for the subgrid scale reactive scalars. The resulting methodology is capable of simulating some of the most intricate physics of complex turbulence-combustion interactions. This is demonstrated by LES of a non-premixed CO/H2 temporally evolv- ing jet flame. The chemistry is modelled via a skeletal kinetics model, and the results are appraised via a posteriori comparisons against direct numerical simulation (DNS) data of the same flame. Excellent agreements are observed for the time evolution of various statistics of the thermo-chemical quantities, including the manifolds of the multi-scalar mixing. The new methodology is capable of capturing the complex phe- nomena of flame-extinction and re-ignition at a 1/512 of the computational cost of the DNS. The high fidelity and the computational affordability of the new PeleLM-FDF solver warrants its consideration for LES of practical turbulent combustion systems.more » « less