skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A global marine particle size distribution dataset obtained with the Underwater Vision Profiler 5
Abstract. Marine particles of different nature are found throughout the globalocean. The term “marine particles” describes detritus aggregates andfecal pellets as well as bacterioplankton, phytoplankton, zooplankton andnekton. Here, we present a global particle size distribution datasetobtained with several Underwater Vision Profiler 5 (UVP5) camerasystems. Overall, within the 64 µm to about 50 mm size range coveredby the UVP5, detrital particles are the most abundant component of allmarine particles; thus, measurements of theparticle size distribution with the UVP5 can yield importantinformation on detrital particle dynamics. During deployment, which ispossible down to 6000 m depth, the UVP5 images a volume of about 1 Lat a frequency of 6 to 20 Hz. Each image is segmented in real time, andsize measurements of particles are automatically stored. All UVP5units used to generate the dataset presented here wereinter-calibrated using a UVP5 high-definition unit as reference. Ourconsistent particle size distribution dataset contains 8805 verticalprofiles collected between 19 June 2008 and 23 November 2020. All major ocean basins, as well as the Mediterranean Sea and the Baltic Sea, were sampled. A total of 19 % of all profiles had a maximum sampling depth shallower than 200 dbar, 38 % sampled at least the upper 1000 dbar depth range and 11 % went down to at least 3000 dbar depth. First analysis of the particle size distribution dataset shows that particle abundance is found to be high at high latitudes and in coastal areas where surface productivity or continental inputs are elevated. The lowest values are found in the deep ocean and in the oceanic gyres. Our dataset should be valuable for more in-depth studies that focus on the analysis of regional, temporal and global patterns of particle size distribution and flux as well as for the development and adjustment of regional and global biogeochemical models. The marine particle size distribution dataset (Kiko et al., 2021) is available at https://doi.org/10.1594/PANGAEA.924375.  more » « less
Award ID(s):
1654663
PAR ID:
10415809
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Earth System Science Data
Volume:
14
Issue:
9
ISSN:
1866-3516
Page Range / eLocation ID:
4315 to 4337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The abundance and size distribution of marine particles control a range of biogeochemical and ecological processes in the ocean, including carbon sequestration. These quantities are the result of complex physical‐biological interactions that are difficult to observe, and their spatial and temporal patterns remain uncertain. Here, we present a novel analysis of particle size distributions (PSDs) from a global compilation of in situ Underwater Vision Profiler 5 (UVP5) optical measurements. Using a machine learning algorithm, we extrapolate sparse UVP5 observations to the global ocean from well‐sampled oceanographic variables. We reconstruct global maps of PSD parameters (biovolume [BV] and slope) for particles at the base of the euphotic zone. These reconstructions reveal consistent global patterns, with high chlorophyll regions generally characterized by high particle BV and flatter PSD slope, that is, a high relative abundance of large versus small particles. The resulting negative correlations between particle BV and slope further suggests synergistic effects on size‐dependent processes such as sinking particle fluxes. Our approach and estimates provide a baseline for an improved understanding of particle cycles in the ocean, and pave the way to global, three‐dimensional reconstructions of PSD and sinking particle fluxes from the growing body of UVP5 observations. 
    more » « less
  2. The Eocene-Oligocene Transition (EOT) at ~34 Ma marked a climatic shift from greenhouse to icehouse conditions, towards long-lasting lower global temperatures and a continental ice sheet in the Antarctic. The relative importance of ocean gateways, pCO2, and ice growth as drivers of this transition are not fully understood. We report on sedimentological and inorganic geochemical results across the EOT at Ocean Drilling Program (ODP) Site 696 in the Weddell Sea, within the Antarctic limb of the Atlantic circulation. The geochemical composition of detrital, authigenic and biogenic marine sediment components, and sortable silt proxies demonstrate the impact of ice growth on high latitude water masses. Sortable silt grain size and Zr/Rb ratios attest to a period of vigorous circulation at ~36.2-35.8 Ma, coincident with a known warm interval in the Southern Ocean. Across the EOT, detrital provenance suggests that regional ice growth in the western Weddell Sea was stepwise, first expanding in the Antarctic Peninsula, followed by parts of West Antarctica. In conjunction with regional ice growth, high uranium enrichment factors (U EF) in sediments spanning the EOT interval indicate anoxic conditions in the sediment with evidence of carbonate dissolution. Following glacial expansion and sea-ice formation at ~33.6 Ma, a return to oxic conditions and carbonate preservation is observed with excess barium and phosphorous indicative of an increase in productivity, and potentially carbon export. Our results highlight the important connections between ice growth and the changing properties of high-latitude water masses at the EOT with impacts on the global ocean circulation. 
    more » « less
  3. Abstract The Eocene‐Oligocene Transition (EOT) at ∼34 Ma marked a climatic shift from greenhouse to icehouse conditions, toward long‐lasting lower global temperatures and a continental ice sheet in the Antarctic. We report on sedimentological and inorganic geochemical results across the EOT at Ocean Drilling Program (ODP) Site 696 in the Weddell Sea, within the Antarctic limb of the Atlantic circulation. The geochemical composition of detrital, authigenic and biogenic marine sediment components, and sortable silt proxies demonstrate the impact of ice growth on high latitude water masses. Sortable silt grain size and Zr/Rb ratios attest to a period of vigorous circulation at ∼36.2–35.8 Ma, coincident with a known warm interval in the Southern Ocean. Across the EOT, detrital provenance suggests that regional ice growth in the western Weddell Sea was stepwise, first expanding in the Antarctic Peninsula, followed by parts of West Antarctica. In conjunction with regional ice growth, high uranium enrichment factors (U EF) in sediments spanning the EOT interval indicate anoxic conditions in the sediment with evidence of carbonate dissolution. Following glacial expansion and sea‐ice formation at ∼33.6 Ma, a return to oxic conditions and carbonate preservation is observed with excess barium and phosphorous indicative of an increase in productivity, and potentially carbon export. Our results highlight the important connections between ice growth and the changing properties of high‐latitude water masses at the EOT with impacts on the global ocean circulation. 
    more » « less
  4. Abstract Oceans are, generally, relatively weak sources of ice nucleating particles (INPs). Thus, dust transported from terrestrial regions can dominate atmospheric INP concentrations even in remote marine regions. Studies of ocean‐emitted INPs have focused upon sea spray aerosols containing biogenic species. Even though large concentrations of dust are transported over marine regions, resuspended dust has never been explicitly considered as another possible source of ocean‐emitted INPs. Current models assume that deposited dust is not re‐emitted from surface waters. Our laboratory studies of aerosol particles produced from coastal seawater and synthetic seawater doped with dust show that dust can indeed be ejected from water during bubble bursting. INP concentration measurements show these ejected dust particles retain ice nucleating activity. Doping synthetic seawater to simulate a strong dust deposition event produced INPs active at temperatures colder than −13°C and INP concentrations 1 to 2 orders of magnitude greater than either lab sea spray or marine boundary layer measurements. The relevance of these laboratory findings is highlighted by single‐particle composition measurements along the Californian coast where at least 9% of dust particles were mixed with sea salt. Additionally, global modeling studies show that resuspension of dust from the ocean could exert the most impact over the Southern Ocean, where ocean‐emitted INPs are thought to dominate atmospheric INP populations. More work characterizing the factors governing the resuspension of dust particles is required to understand the potential impact upon clouds. 
    more » « less
  5. Marine plastic pollution is a global issue, with microplastics (1 μm–5 mm) dominating the measured plastic count1,2. Although microplastics can be found throughout the oceanic water column3,4, most studies collect microplastics from surface waters (less than about 50-cm depth) using net tows5. Consequently, our understanding of the microplastics distribution across ocean depths is more limited. Here we synthesize depth-profile data from 1,885 stations collected between 2014 and 2024 to provide insights into the distribution and potential transport mechanisms of subsurface (below about 50-cm depth, which is not usually sampled by traditional practices3,6) microplastics throughout the oceanic water column. We find that the abundances of microplastics range from 10−4 to 104 particles per cubic metre. Microplastic size affects their distribution; the abundance of small microplastics (1 μm to 100 μm) decreases gradually with depth, indicating a more even distribution and longer lifespan in the water column compared with larger microplastics (100 μm to 5,000 μm) that tend to concentrate at the stratified layers. Mid-gyre accumulation zones extend into the subsurface ocean but are concentrated in the top 100 m and predominantly consist of larger microplastics. Our analysis suggests that microplastics constitute a measurable fraction of the total particulate organic carbon, increasing from 0.1% at 30 m to 5% at 2,000 m. Although our study establishes a global benchmark, our findings underscore that the lack of standardization creates substantial uncertainties, making it challenging to advance our comprehension of the distribution of microplastics and its impact on the oceanic environment. 
    more » « less