skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraining the Particle Size Distribution of Large Marine Particles in the Global Ocean With In Situ Optical Observations and Supervised Learning
Abstract The abundance and size distribution of marine particles control a range of biogeochemical and ecological processes in the ocean, including carbon sequestration. These quantities are the result of complex physical‐biological interactions that are difficult to observe, and their spatial and temporal patterns remain uncertain. Here, we present a novel analysis of particle size distributions (PSDs) from a global compilation of in situ Underwater Vision Profiler 5 (UVP5) optical measurements. Using a machine learning algorithm, we extrapolate sparse UVP5 observations to the global ocean from well‐sampled oceanographic variables. We reconstruct global maps of PSD parameters (biovolume [BV] and slope) for particles at the base of the euphotic zone. These reconstructions reveal consistent global patterns, with high chlorophyll regions generally characterized by high particle BV and flatter PSD slope, that is, a high relative abundance of large versus small particles. The resulting negative correlations between particle BV and slope further suggests synergistic effects on size‐dependent processes such as sinking particle fluxes. Our approach and estimates provide a baseline for an improved understanding of particle cycles in the ocean, and pave the way to global, three‐dimensional reconstructions of PSD and sinking particle fluxes from the growing body of UVP5 observations.  more » « less
Award ID(s):
1654663
PAR ID:
10445792
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
36
Issue:
5
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A considerable amount of particulate carbon produced by oceanic photosynthesis is exported to the deep-sea by the “gravitational pump” (~6.8 to 7.7 Pg C/year), sequestering it from the atmosphere for centuries. How particulate organic carbon (POC) is transformed during export to the deep sea however is not well understood. Here, we report that dominant suspended prokaryotes also found in sinking particles serve as informative tracers of particle export processes. In a three-year time series from oceanographic campaigns in the Pacific Ocean, upper water column relative abundances of suspended prokaryotes entrained in sinking particles decreased exponentially from depths of 75 to 250 m, conforming to known depth-attenuation patterns of carbon, energy, and mass fluxes in the epipelagic zone. Below ~250 m however, the relative abundance of suspended prokaryotes entrained in sinking particles increased with depth. These results indicate that microbial entrainment, colonization, and sinking particle formation are elevated at mesopelagic and bathypelagic depths. Comparison of suspended and sinking particle-associated microbes provides information about the depth-variability of POC export and biotic processes, that is not evident from biogeochemical data alone. 
    more » « less
  2. Abstract Sinking particles strongly regulate the distribution of reactive chemical substances in the ocean, including particulate organic carbon and other elements (e.g., P, Cd, Mn, Cu, Co, Fe, Al, and232Th). Yet, the sinking fluxes of trace elements have not been well described in the global ocean. The U.S. GEOTRACES campaign in the North Atlantic (GA03) offers the first data set in which the sinking flux of carbon and trace elements can be derived using four different radionuclide pairs (238U:234Th;210Pb:210Po;228Ra:228Th; and234U:230Th) at stations co‐located with sediment trap fluxes for comparison. Particulate organic carbon, particulate P, and particulate Cd fluxes all decrease sharply with depth below the euphotic zone. Particulate Mn, Cu, and Co flux profiles display mixed behavior, some cases reflecting biotic remineralization, and other cases showing increased flux with depth. The latter may be related to either lateral input of lithogenic material or increased scavenging onto particles. Lastly, particulate Fe fluxes resemble fluxes of Al and232Th, which all have increasing flux with depth, indicating a dominance of lithogenic flux at depth by resuspended sediment transported laterally to the study site. In comparing flux estimates derived using different isotope pairs, differences result from different timescales of integration and particle size fractionation effects. The range in flux estimates produced by different methods provides a robust constraint on the true removal fluxes, taking into consideration the independent uncertainties associated with each method. These estimates will be valuable targets for biogeochemical modeling and may also offer insight into particle sinking processes. 
    more » « less
  3. Abstract The size distribution of suspended particles influences several processes in aquatic ecosystems, including light propagation, trophic interactions, and biogeochemical cycling. The shape of the particle size distribution (PSD) is commonly modeled as a single‐slope power law in oceanographic studies, which can be used to further estimate the relative contributions of different particle size classes to particle number, area, and volume concentration. We use a data set of 168 high size‐resolution PSD measurements in Arctic oceanic waters to examine variability in the shape of the PSD over the particle diameter range 0.8 to 120 μm. An average value of −3.6 ± 0.33 was obtained for the slope of a power law fitted over this size range, consistent with other studies. Our analysis indicates, however, that this model has significant limitations in adequately parameterizing the complexity of the PSD, and thus performs poorly in predicting the relative contributions of different size intervals such as those based on picoplankton, nanoplankton, and microplankton size classes. Similarly, median particle size was also generally a poor indicator of these size class contributions. Our results suggest that alternative percentile diameters derived from the cumulative distribution functions of particle number, cross‐sectional area, and volume concentration may provide better metrics to capture the overall shape of the PSD and to quantify the contributions of different particle size classes. 
    more » « less
  4. Abstract A key challenge for current‐generation Earth system models (ESMs) is the simulation of the penetration of sinking particulate organic carbon (POC) into the ocean interior, which has implications for projections of future oceanic carbon sequestration in a warming climate. This paper presents a new, cost‐efficient, mechanistic 1D model that prognostically calculates POC fluxes by carrying four component particles in two different size classes. Gravitational settling and removal/transformation processes are represented explicitly through parameterizations that incorporate the effects of particle size and density, dissolved oxygen, calcite and aragonite saturation states, and seawater temperature, density, and viscosity. The model reproduces the observed POC flux attenuation at 22 locations in the North Atlantic and North Pacific. The model is applied over a global ocean domain with seawater properties prescribed from observation‐based climatologies in order to address an important scientific question: What controls the spatial pattern of mesopelagic POC transfer efficiency? The simulated vertical POC transfer is more efficient at high latitudes than at low latitudes with the exception of oxygen minimum zones, which is consistent with recent inverse modeling and neutrally buoyant sediment trap studies. Here, model experiments show that the relative abundance of large‐sized, rapidly sinking particles and the slower rate of remineralization at high latitudes compensate for the region's lack of calcium carbonate ballast and the cold‐water viscous resistance, leading to higher transfer efficiencies compared to low‐latitude regions. The model could be deployed in ESMs in order to diagnose the impacts of climate change on oceanic carbon sequestration and vice versa. 
    more » « less
  5. Sinking marine particles transport carbon from the ocean’s surface to the deep ocean, thereby contributing to atmospheric carbon dioxide modulation and benthic food supply. Many studies have shown that particle size is not a good predictor of particle sinking speed or behavior. Thus, the overarching question of this dissertation: why do certain particles sink faster or deeper than others, and is there a way to predict what depth a particle will reach in the ocean? Multiple facets of the ocean’s biological carbon pump are investigated using a combination of sediment traps, in situ particle imaging, and machine learning technology. In the Gulf of Alaska, we find aggregates contributed 61% to total carbon flux, suggesting that aggregation processes, not zooplankton repackaging, played a dominant role in carbon export. The role of the physical environment on the biological carbon pump was investigated in the Southern Ocean. Fluffy aggregates and grazers were most common at the surface during a phytoplankton bloom, whereas 1-3 months after a bloom, grazers are in the mesopelagic and feces and dense aggregates are in high abundance in the bathypelagic. These results shed light on how frontal structures in the Southern Ocean influence patterns of particle export and remineralization in the mesopelagic with implications for how this influences global biogeochemical cycles. Finally, the effect of biogeochemical province and carbonate saturation state was investigated in the tropical and subtropical North Atlantic and Pacific. We find that plankton distribution and marine particle morphology in the Atlantic Ocean are more strongly impacted by aragonite and calcite saturation state, despite much shallower saturation horizons in the Pacific. This research can help better predict how the strength of carbon storage in the ocean may change with climate change, which is critical for climate modelers to predict the effects of climate change more accurately. 
    more » « less