Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Sinking marine particles, one pathway of the biological carbon pump, transports carbon to the deep ocean from the surface, thereby modulating atmospheric carbon dioxide and supplying benthic food. Few in situ measurements exist of sinking particles in the Northern Gulf of Alaska; therefore, regional carbon flux prediction is poorly constrained. In this study, we (1) characterize the strength and efficiency of the biological carbon pump and (2) identify drivers of carbon flux in the Northern Gulf of Alaska. We deployed up to five inline drifting sediment traps in the upper 150 m to simultaneously collect bulk carbon and intact sinking particles in polyacrylamide gels and measured net primary productivity from deck‐board incubations during the summer of 2019. We found high carbon flux magnitude, low attenuation with depth, and high export efficiency. We quantitatively attributed carbon flux between 10 particle types, including various fecal pellet categories, dense detritus, and aggregates using polyacrylamide gels. The contribution of aggregates to total carbon flux (41–93%) and total carbon flux variability (95%) suggest that aggregation processes, not zooplankton repackaging, played a dominant role in carbon export. Furthermore, export efficiency correlated significantly with the proportion of chlorophyllain the large size fraction (> 20 μm), total aggregate carbon flux, and contribution of aggregates to total carbon flux. These results suggest that this stratified, small‐cell‐dominated ecosystem can have sufficient aggregation to allow for a strong and efficient biological carbon pump. This is the first integrative description of the biological carbon pump in this region.more » « less
-
Abstract The abundance and size distribution of marine particles control a range of biogeochemical and ecological processes in the ocean, including carbon sequestration. These quantities are the result of complex physical‐biological interactions that are difficult to observe, and their spatial and temporal patterns remain uncertain. Here, we present a novel analysis of particle size distributions (PSDs) from a global compilation of in situ Underwater Vision Profiler 5 (UVP5) optical measurements. Using a machine learning algorithm, we extrapolate sparse UVP5 observations to the global ocean from well‐sampled oceanographic variables. We reconstruct global maps of PSD parameters (biovolume [BV] and slope) for particles at the base of the euphotic zone. These reconstructions reveal consistent global patterns, with high chlorophyll regions generally characterized by high particle BV and flatter PSD slope, that is, a high relative abundance of large versus small particles. The resulting negative correlations between particle BV and slope further suggests synergistic effects on size‐dependent processes such as sinking particle fluxes. Our approach and estimates provide a baseline for an improved understanding of particle cycles in the ocean, and pave the way to global, three‐dimensional reconstructions of PSD and sinking particle fluxes from the growing body of UVP5 observations.more » « less
-
Sinking marine particles transport carbon from the ocean’s surface to the deep ocean, thereby contributing to atmospheric carbon dioxide modulation and benthic food supply. Many studies have shown that particle size is not a good predictor of particle sinking speed or behavior. Thus, the overarching question of this dissertation: why do certain particles sink faster or deeper than others, and is there a way to predict what depth a particle will reach in the ocean? Multiple facets of the ocean’s biological carbon pump are investigated using a combination of sediment traps, in situ particle imaging, and machine learning technology. In the Gulf of Alaska, we find aggregates contributed 61% to total carbon flux, suggesting that aggregation processes, not zooplankton repackaging, played a dominant role in carbon export. The role of the physical environment on the biological carbon pump was investigated in the Southern Ocean. Fluffy aggregates and grazers were most common at the surface during a phytoplankton bloom, whereas 1-3 months after a bloom, grazers are in the mesopelagic and feces and dense aggregates are in high abundance in the bathypelagic. These results shed light on how frontal structures in the Southern Ocean influence patterns of particle export and remineralization in the mesopelagic with implications for how this influences global biogeochemical cycles. Finally, the effect of biogeochemical province and carbonate saturation state was investigated in the tropical and subtropical North Atlantic and Pacific. We find that plankton distribution and marine particle morphology in the Atlantic Ocean are more strongly impacted by aragonite and calcite saturation state, despite much shallower saturation horizons in the Pacific. This research can help better predict how the strength of carbon storage in the ocean may change with climate change, which is critical for climate modelers to predict the effects of climate change more accurately.more » « less
-
Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and provides major ecosystem services as a main driver of the biological carbon pump and in sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to its changes. To better understand the importance of zooplankton, and to inform prognostic models that try to represent them, spatially-resolved biomass estimates of key plankton taxa are desirable. In this study we predict, for the first time, the global biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-500 m) obtained between 2008 and 2019 throughout the globe, we estimated their individual biovolumes and converted them to biomass using taxa-specific conversion factors. We then associated these biomass estimates with climatologies of environmental variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results reveal maximal zooplankton biomass values around 60°N and 55°S as well as minimal values around the oceanic gyres. An increased zooplankton biomass is also predicted for the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The machine learning approach used here is sensitive to the size of the training set and generates reliable predictions for abundant groups such as Copepoda (R2 ≈ 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 < 5%). Still, this study offers a first protocol to estimate global, spatially resolved zooplankton biomass and community composition from in situ imaging observations of individual organisms. The underlying dataset covers a period of 10 years while approaches that rely on net samples utilized datasets gathered since the 1960s. Increased use of digital imaging approaches should enable us to obtain zooplankton biomass distribution estimates at basin to global scales in shorter time frames in the future.more » « less
-
Abstract. Marine particles of different nature are found throughout the globalocean. The term “marine particles” describes detritus aggregates andfecal pellets as well as bacterioplankton, phytoplankton, zooplankton andnekton. Here, we present a global particle size distribution datasetobtained with several Underwater Vision Profiler 5 (UVP5) camerasystems. Overall, within the 64 µm to about 50 mm size range coveredby the UVP5, detrital particles are the most abundant component of allmarine particles; thus, measurements of theparticle size distribution with the UVP5 can yield importantinformation on detrital particle dynamics. During deployment, which ispossible down to 6000 m depth, the UVP5 images a volume of about 1 Lat a frequency of 6 to 20 Hz. Each image is segmented in real time, andsize measurements of particles are automatically stored. All UVP5units used to generate the dataset presented here wereinter-calibrated using a UVP5 high-definition unit as reference. Ourconsistent particle size distribution dataset contains 8805 verticalprofiles collected between 19 June 2008 and 23 November 2020. All major ocean basins, as well as the Mediterranean Sea and the Baltic Sea, were sampled. A total of 19 % of all profiles had a maximum sampling depth shallower than 200 dbar, 38 % sampled at least the upper 1000 dbar depth range and 11 % went down to at least 3000 dbar depth. First analysis of the particle size distribution dataset shows that particle abundance is found to be high at high latitudes and in coastal areas where surface productivity or continental inputs are elevated. The lowest values are found in the deep ocean and in the oceanic gyres. Our dataset should be valuable for more in-depth studies that focus on the analysis of regional, temporal and global patterns of particle size distribution and flux as well as for the development and adjustment of regional and global biogeochemical models. The marine particle size distribution dataset (Kiko et al., 2021) is available at https://doi.org/10.1594/PANGAEA.924375.more » « less
An official website of the United States government

Full Text Available