skip to main content


Title: Two Complementary Methods of Inferring Elastic Symmetry
Abstract An elastic map $\mathbf {T}$ T describes the strain-stress relation at a particular point $\mathbf {p}$ p in some material. A symmetry of $\mathbf {T}$ T is a rotation of the material, about  $\mathbf {p}$ p , that does not change  $\mathbf {T}$ T . We describe two ways of inferring the group $\mathcal {S} _{ \mathbf {T} }$ S T of symmetries of any elastic map $\mathbf {T}$ T ; one way is qualitative and visual, the other is quantitative. In the first method, we associate to each $\mathbf {T}$ T its “monoclinic distance function” "Equation missing" on the unit sphere. The function "Equation missing" is invariant under all of the symmetries of  $\mathbf {T}$ T , so the group $\mathcal {S} _{ \mathbf {T} }$ S T is seen, approximately, in a contour plot of "Equation missing" . The second method is harder to summarize, but it complements the first by providing an algorithm to compute the symmetry group $\mathcal {S} _{ \mathbf {T} }$ S T . In addition to $\mathcal {S} _{ \mathbf {T} }$ S T , the algorithm gives a quantitative description of the overall approximate symmetry of  $\mathbf {T}$ T . Mathematica codes are provided for implementing both the visual and the quantitative approaches.  more » « less
Award ID(s):
1829447
NSF-PAR ID:
10415814
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Elasticity
Volume:
150
Issue:
1
ISSN:
0374-3535
Page Range / eLocation ID:
91 to 118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The elastic map, or generalized Hooke’s Law, associates stress with strain in an elastic material. A symmetry of the elastic map is a reorientation of the material that does not change the map. We treat the topic of elastic symmetry conceptually and pictorially. The elastic map is assumed to be linear, and we study it using standard notions from linear algebra—not tensor algebra. We depict strain and stress using the “beachballs” familiar to seismologists. The elastic map, whose inputs and outputs are strains and stresses, is in turn depicted using beachballs. We are able to infer the symmetries for most elastic maps, sometimes just by inspection of their beachball depictions. Many of our results will be familiar, but our versions are simpler and more transparent than their counterparts in the literature. 
    more » « less
  2. Abstract Using the theory of ${\mathbf {FS}} {^\mathrm {op}}$ modules, we study the asymptotic behavior of the homology of ${\overline {\mathcal {M}}_{g,n}}$ , the Deligne–Mumford compactification of the moduli space of curves, for $n\gg 0$ . An ${\mathbf {FS}} {^\mathrm {op}}$ module is a contravariant functor from the category of finite sets and surjections to vector spaces. Via copies that glue on marked projective lines, we give the homology of ${\overline {\mathcal {M}}_{g,n}}$ the structure of an ${\mathbf {FS}} {^\mathrm {op}}$ module and bound its degree of generation. As a consequence, we prove that the generating function $\sum _{n} \dim (H_i({\overline {\mathcal {M}}_{g,n}})) t^n$ is rational, and its denominator has roots in the set $\{1, 1/2, \ldots, 1/p(g,i)\},$ where $p(g,i)$ is a polynomial of order $O(g^2 i^2)$ . We also obtain restrictions on the decomposition of the homology of ${\overline {\mathcal {M}}_{g,n}}$ into irreducible $\mathbf {S}_n$ representations. 
    more » « less
  3. We study the category of S p \mathbf {Sp} -equivariant modules over the infinite variable polynomial ring, where S p \mathbf {Sp} denotes the infinite symplectic group. We establish a number of results about this category: for instance, we show that every finitely generated module M M fits into an exact triangle T → M → F → T \to M \to F \to where T T is a finite length complex of torsion modules and F F is a finite length complex of “free” modules; we determine the Grothendieck group; and we (partially) determine the structure of injective modules. We apply these results to show that the twisted commutative algebras Sym ⁡ ( C ∞ ⊕ ⋀ 2 C ∞ ) \operatorname {Sym}(\mathbf {C}^{\infty } \oplus \bigwedge ^2{\mathbf {C}^{\infty }}) and Sym ⁡ ( C ∞ ⊕ Sym 2 ⁡ C ∞ ) \operatorname {Sym}(\mathbf {C}^{\infty } \oplus \operatorname {Sym}^2{\mathbf {C}^{\infty }}) are noetherian, which are the strongest results to date of this kind. We also show that the free 2-step nilpotent twisted Lie algebra and Lie superalgebra are noetherian. 
    more » « less
  4. We investigate the behavior of higher-form symmetries at variousquantum phase transitions. We consider discrete 1-form symmetries, whichcan be either part of the generalized concept “categorical symmetry”(labelled as \tilde{Z}_N^{(1)} Z ̃ N ( 1 ) )introduced recently, or an explicit Z_N^{(1)} Z N ( 1 ) 1-form symmetry. We demonstrate that for many quantum phase transitionsinvolving a Z_N^{(1)} Z N ( 1 ) or \tilde{Z}_N^{(1)} Z ̃ N ( 1 ) symmetry, the following expectation value \langle \left( O_\mathcal{C}\right)^2 \rangle ⟨ ( O 𝒞 ) 2 ⟩ takes the form \langle \left( \log O_\mathcal{C} \right)^2 \rangle \sim - \frac{A}{\epsilon} P + b \log P ⟨ ( log O 𝒞 ) 2 ⟩ ∼ − A ϵ P + b log P , where O_\mathcal{C} O 𝒞 is an operator defined associated with loop \mathcal{C} 𝒞 (or its interior \mathcal{A} 𝒜 ),which reduces to the Wilson loop operator for cases with an explicit Z_N^{(1)} Z N ( 1 ) 1-form symmetry. P P is the perimeter of \mathcal{C} 𝒞 ,and the b \log P b log P term arises from the sharp corners of the loop \mathcal{C} 𝒞 ,which is consistent with recent numerics on a particular example. b b is a universal microscopic-independent number, which in (2+1)d ( 2 + 1 ) d is related to the universal conductivity at the quantum phasetransition. b b can be computed exactly for certain transitions using the dualitiesbetween (2+1)d ( 2 + 1 ) d conformal field theories developed in recent years. We also compute the"strange correlator" of O_\mathcal{C} O 𝒞 : S_{\mathcal{C}} = \langle 0 | O_\mathcal{C} | 1 \rangle / \langle 0 | 1 \rangle S 𝒞 = ⟨ 0 | O 𝒞 | 1 ⟩ / ⟨ 0 | 1 ⟩ where |0\rangle | 0 ⟩ and |1\rangle | 1 ⟩ are many-body states with different topological nature. 
    more » « less
  5. A bstract The infrared behavior of gravity in 4D asymptotically flat spacetime exhibits a rich set of symmetries. This has led to a proposed holographic duality between the gravitational $$ \mathcal{S} $$ S -matrix and a dual field theory living on the celestial sphere. Most of our current understanding of the dictionary relies on knowledge of the 4D bulk. As such, identifying intrinsic 2D models that capture the correct symmetries and soft dynamics of 4D gravity is an active area of interest. Here we propose that a 2D generalization of SYK provides an instructive toy model for the soft limit of the gravitational sector in 4D asymptotically flat spacetime. We find that the symmetries and soft dynamics of the 2D SYK model capture the salient features of the celestial theory: exhibiting chaotic dynamics, conformal invariance, and a w 1+ ∞ symmetry. The holographic map from 2D SYK operators to the 4D bulk employs the Penrose twistor transform. 
    more » « less