We study the Hilbert scheme\mathrm{Hilb}_{d}(\mathbf{A}^{\infty})from an\mathbf{A}^{1}-homotopical viewpoint and obtain applications to algebraic K-theory. We show that the Hilbert scheme\mathrm{Hilb}_{d}(\mathbf{A}^{\infty})is\mathbf{A}^{1}-equivalent to the Grassmannian of(d-1)-planes in\mathbf{A}^{\infty}. We then describe the\mathbf{A}^{1}-homotopy type of\mathrm{Hilb}_{d}(\mathbf{A}^{n})in a certain range, fornlarge compared tod. For example, we compute the integral cohomology of\mathrm{Hilb}_{d}(\mathbf{A}^{n})(\mathbf{C})in a range. We also deduce that the forgetful map\mathcal{FF}\mathrm{lat}\to\mathcal{V}\mathrm{ect}from the moduli stack of finite locally free schemes to that of finite locally free sheaves is an\mathbf{A}^{1}-equivalence after group completion. This implies that the moduli stack\mathcal{FF}\mathrm{lat}, viewed as a presheaf with framed transfers, is a model for the effective motivic spectrum\mathrm{kgl}representing algebraic K-theory. Combining our techniques with the recent work of Bachmann, we obtain Hilbert scheme models for the\mathrm{kgl}-homology of smooth proper schemes over a perfect field. 
                        more » 
                        « less   
                    
                            
                            Stability in the homology of Deligne–Mumford compactifications
                        
                    
    
            Abstract Using the theory of $${\mathbf {FS}} {^\mathrm {op}}$$ modules, we study the asymptotic behavior of the homology of $${\overline {\mathcal {M}}_{g,n}}$$ , the Deligne–Mumford compactification of the moduli space of curves, for $$n\gg 0$$ . An $${\mathbf {FS}} {^\mathrm {op}}$$ module is a contravariant functor from the category of finite sets and surjections to vector spaces. Via copies that glue on marked projective lines, we give the homology of $${\overline {\mathcal {M}}_{g,n}}$$ the structure of an $${\mathbf {FS}} {^\mathrm {op}}$$ module and bound its degree of generation. As a consequence, we prove that the generating function $$\sum _{n} \dim (H_i({\overline {\mathcal {M}}_{g,n}})) t^n$$ is rational, and its denominator has roots in the set $$\{1, 1/2, \ldots, 1/p(g,i)\},$$ where $p(g,i)$ is a polynomial of order $O(g^2 i^2)$ . We also obtain restrictions on the decomposition of the homology of $${\overline {\mathcal {M}}_{g,n}}$$ into irreducible $$\mathbf {S}_n$$ representations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1903040
- PAR ID:
- 10414318
- Date Published:
- Journal Name:
- Compositio Mathematica
- Volume:
- 157
- Issue:
- 12
- ISSN:
- 0010-437X
- Page Range / eLocation ID:
- 2635 to 2656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Given integers $$g,n\geqslant 0$$ satisfying $2-2g-n<0$ , let $${\mathcal{M}}_{g,n}$$ be the moduli space of connected, oriented, complete, finite area hyperbolic surfaces of genus $$g$$ with $$n$$ cusps. We study the global behavior of the Mirzakhani function $$B:{\mathcal{M}}_{g,n}\rightarrow \mathbf{R}_{{\geqslant}0}$$ which assigns to $$X\in {\mathcal{M}}_{g,n}$$ the Thurston measure of the set of measured geodesic laminations on $$X$$ of hyperbolic length $${\leqslant}1$$ . We improve bounds of Mirzakhani describing the behavior of this function near the cusp of $${\mathcal{M}}_{g,n}$$ and deduce that $$B$$ is square-integrable with respect to the Weil–Petersson volume form. We relate this knowledge of $$B$$ to statistics of counting problems for simple closed hyperbolic geodesics.more » « less
- 
            Let ρ ¯ : G Q → GSp 4  ( F 3 ) \overline {\rho }: G_{\mathbf {Q}} \rightarrow \operatorname {GSp}_4(\mathbf {F}_3) be a continuous Galois representation with cyclotomic similitude character. Equivalently, consider ρ ¯ \overline {\rho } to be the Galois representation associated to the 3 3 -torsion of a principally polarized abelian surface A / Q A/\mathbf {Q} . We prove that the moduli space A 2 ( ρ ¯ ) \mathcal {A}_2(\overline {\rho }) of principally polarized abelian surfaces B / Q B/\mathbf {Q} admitting a symplectic isomorphism B [ 3 ] ≃ ρ ¯ B[3] \simeq \overline {\rho } of Galois representations is never rational over Q \mathbf {Q} when ρ ¯ \overline {\rho } is surjective, even though it is both rational over C \mathbf {C} and unirational over Q \mathbf {Q} via a map of degree 6 6 .more » « less
- 
            Abstract We prove that the rational cohomology group$$H^{11}(\overline {\mathcal {M}}_{g,n})$$vanishes unless$$g = 1$$and$$n \geq 11$$. We show furthermore that$$H^k(\overline {\mathcal {M}}_{g,n})$$is pure Hodge–Tate for all even$$k \leq 12$$and deduce that$$\# \overline {\mathcal {M}}_{g,n}(\mathbb {F}_q)$$is surprisingly well approximated by a polynomial inq. In addition, we use$$H^{11}(\overline {\mathcal {M}}_{1,11})$$and its image under Gysin push-forward for tautological maps to produce many new examples of moduli spaces of stable curves with nonvanishing odd cohomology and nontautological algebraic cycle classes in Chow cohomology.more » « less
- 
            Meila, Marina; Zhang, Tong (Ed.)In the Correlation Clustering problem, we are given a complete weighted graph $$G$$ with its edges labeled as “similar" and “dissimilar" by a noisy binary classifier. For a clustering $$\mathcal{C}$$ of graph $$G$$, a similar edge is in disagreement with $$\mathcal{C}$$, if its endpoints belong to distinct clusters; and a dissimilar edge is in disagreement with $$\mathcal{C}$$ if its endpoints belong to the same cluster. The disagreements vector, $$\mathbf{disagree}$$, is a vector indexed by the vertices of $$G$$ such that the $$v$$-th coordinate $$\mathbf{disagree}_v$$ equals the weight of all disagreeing edges incident on $$v$$. The goal is to produce a clustering that minimizes the $$\ell_p$$ norm of the disagreements vector for $$p\geq 1$$. We study the $$\ell_p$$ objective in Correlation Clustering under the following assumption: Every similar edge has weight in $$[\alpha\mathbf{w},\mathbf{w}]$$ and every dissimilar edge has weight at least $$\alpha\mathbf{w}$$ (where $$\alpha \leq 1$$ and $$\mathbf{w}>0$$ is a scaling parameter). We give an $$O\left((\frac{1}{\alpha})^{\frac{1}{2}-\frac{1}{2p}}\cdot \log\frac{1}{\alpha}\right)$$ approximation algorithm for this problem. Furthermore, we show an almost matching convex programming integrality gap.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    