This research paper investigates the relationship between race/ ethnicity, gender, first-generation college student status, and engineering identity using cross-sectional data from early-career engineering majors. Measures of engineering identity are increasingly used in models of engineering education to evaluate how identity contributes to success and persistence of engineering students. Engineering identity is generally assumed to contribute to educational success, with stronger engineering identity leading to persistence. At the same time, data clearly shows that persistence of engineering students varies by race/ethnicity and gender. Given these previous findings, we would expect to find that engineering identity will vary by race/ ethnicity, gender, and first generation status. Yet, relatively little work has quantitatively compared how engineering identity differs across racial/ ethnic groups and gender. While researchers are increasingly trying to gain a better understanding of engineering identity among Latina students, for example, the literature has not yet adequately accounted for how Latina students differ from their non-Hispanic white peers. This works seeks to address that gap in the literature with an exploration of the ways that race/ethnicity, gender, and first generation status work together to impact engineering identity among early-career engineering students at four public Hispanic-Serving Institutions (HSIs) in the Southwestern United States. We conducted surveys as part of a longitudinal study on STEM education. Data discussed here comes from baseline surveys of three cohorts of engineering students (N=475). Approximately two-thirds of the respondents were attending a traditional 4-year university while the remainder (N=159) were attending community college at the time of the survey. Approximately two-thirds of the respondents identified as Latinx, 27% identified as female, and 26.5% reported that they were first-generation college students. While expectations were that engineering identity would vary by race/ethnicity and gender, preliminary analyses of our data unexpectedly reveal no significant differences between Latinx and White students in terms of their engineering identity and no significant differences in engineering identity between male and female students. Interactions between race/ethnicity and gender were also tested and yielded no significant differences between early-career Latinx and White students in terms of their engineering identity. Finally, students who reported that they will be the first in their family to get a college degree had significantly lower engineering identity scores (=-.422; p=.001). These results lead us to conclude that first generation status at HSIs may be more important than gender and race/ ethnicity in the development of engineering identity for early career students.
more »
« less
Exploration of Relationships between Conformity to Masculine Social Norms and Demographic Characteristics
In this full research paper, we bring into focus the interplay of conformity to masculine social norms and demographic characteristics (i.e., gender, race/ethnicity, institutional settings) among undergraduate engineering students in the United States. We approached this study with an exploratory, non-experimental design that involved examining patterns of relationship between the conformity to masculine social norms and demographic characteristics of respondents. Our data were obtained from of survey responses by engineering students (n = 128) in first-year general engineering courses at three universities in the Southeastern United States. We operationalized conformity to masculine social norms using the Conformity to Masculinity Social Norms Inventory (CMNI-22). Our results revealed moderate to low conformity to masculine social norms among engineering students in first-year general engineering courses. Overall, student demographic characteristics appeared to have weak to limited influence on levels of conformity. However, the institutional setting interacted significantly with both gender and race/ethnicity such that male students at the public research university setting and white students in the same setting reported significantly higher levels of conformity to masculine social norms than students in other demographic categories. We discuss these findings as they enrich understanding about how institutional contexts might affect gendered social norms related to engineering professional formation.
more »
« less
- Award ID(s):
- 1554057
- PAR ID:
- 10415835
- Date Published:
- Journal Name:
- IEEE Frontiers in Education
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Promise programs are proliferating across the United States, with wide variation in their design. Using national data on 33 Promise programs affecting single, 2-year colleges, this study examines program effects on first-time, full-time college enrollments of students by race/ethnicity and gender classification. Results suggest Promise programs are associated with large percent increases in enrollments of Black and Hispanic students, especially students classified as females, at eligible colleges. Promise programs with merit requirements are associated with higher enrollment of White and Asian, Native Hawaiian, or Pacific Islander female students; those with income requirements are negatively associated with enrollment of most demographic groups. More generous Promise programs are associated with greater enrollment increases among demographic groups with historically higher levels of postsecondary attainment.more » « less
-
Parks, Samantha T. (Ed.)ABSTRACT Diversifying the STEM workforce is a national priority, yet white males continue to dominate the ranks of professional scientists and engineers in the United States. This is partly due to disparities in academic success for women and minoritized students in prerequisite introductory STEM courses, leading to higher attrition from B.S. degree programs. Past research has demonstrated that when social-psychological interventions targeting “stereotype threat” or “fixed” mindsets are implemented in STEM courses, equity gaps may be significantly reduced. We incorporated two such interventions into introductory biology courses for life science B.S. majors and Associate’s degree allied health students taught at a regional research university and a community college. We observed no significant effects of the values-affirmation interventions on grade outcomes for students in any of the courses, regardless of students' gender identity, race/ethnicity, or first-generation status, suggesting that students, on average, were not experiencing stereotype threat on either campus. We found a significant positive association between completing more weekly reflective journal entries and higher mean content-based grades for students in the university majors course overall, especially first-generation students, although the association was significantly negative for women. Our results confirm that context matters when implementing interventions aimed at reducing achievement gaps, and we propose that educators assess their students’ social-psychological characteristics and then select interventions accordingly.more » « less
-
Abstract BackgroundAlthough participation rates vary by field, Latiné and women engineers continue to be underrepresented across most segments of the engineering workforce. Research has examined engagement and persistence of Latiné and White women in engineering; however, few studies have investigated how race, ethnicity, gender, and institutional setting interact to produce inequities in the field. PurposeTo address these limitations, we examined how Latina, Latino, and White women and men students' engagement in engineering was informed by their intersecting identities and within their institutional setting over the course of a year. MethodWe interviewed 32 Latina, Latino, and White women and men undergraduate engineering students attending 11 different predominantly White and Hispanic Serving Institutions. Thematic analysis was used to interpret themes from the data. ResultsOur findings illustrate how Latinas, Latinos, and White women developed a strong engineering identity, which was critical to their engagement in engineering. Students' engineering identity was grounded in their perceived fit within engineering culture, sense of purpose for pursuing their degree, and resistance to the dominance of White male culture in engineering. Latinas described unique forms of gendered, racialized marginalization in engineering, whereas Latinas and Latinos highlighted prosocial motivations for completing their degree. ConclusionsFindings suggest that institutional cultures, norms, and missions are critical to broadening participation of Latinas, Latinos, and White women in engineering. Disrupting White male culture, leveraging Latiné students' cultural wealth, and counter‐framing traditional recruitment pitches for engineering appear to be key in these efforts.more » « less
-
The purpose of this research paper is to understand how diverse students are incorporated into the social structure of a large enrollment first-year engineering design course. Despite previous work demonstrating the benefits of diverse individuals in engineering, little work has examined how diverse students are incorporated into the social networks that exist within engineering classrooms. Social interactions are one of the most influential sources for integration into communities of practice. Through understanding how students interact and the structure of these interactions, we can elucidate how the engineering community includes members of underrepresented populations. Previous social network analysis (SNA) studies have scrutinized student classroom interactions. These studies typically attempt to link classroom interactions to academic outcomes (i.e., grades). In this study, we start to shift the focus away from connecting student interactions to academic outcomes and examine how the structure of student interactions can encourage an inclusive environment in a formal engineering environment. SNA data was collected via an online survey (n = 502, 74% response rate) one month into the semester at a Western land-grant institution. The survey asked first-year engineering students to indicate with whom they had interacted using a pre-populated list of the class roster and open-ended questions. The number of students that were mentioned by a participant (out-degree) is interpreted as a proxy of their sociableness. Whereas, the number of times a student was mentioned by others (in-degree) is interpreted as popularity. We posit that in an inclusive network structure the social behaviors (i.e., in and out-degree) will be independent of students’ demographic characteristics (e.g., race and gender). Nonparametric hypothesis testing (i.e., Kruskal-Wallis and Dunn’s test) was used to investigate the effects of gender and race on both in and out-degree. Results indicate that the social structure of the first-year engineering community is inclusive of both gender and race. Specifically, results indicated no significant differences for in-degree based on measures of race and gender, for students who provided race and gender information. Out-degree was not significantly different based on race. However, women did demonstrate significantly higher out-degree scores (i.e., greater sociableness) than their peers. Building on previous SNA literature, the increased connections expressed by women may lead to increased learning gains or performance within engineering. Results indicated that the social structure of this first-year engineering course, as indicated by in-degree and out-degree, is not significantly different for underrepresented groups. This result begins to illustrate a more complex story than the existing literature has documented of engineering as an unwelcoming environment for underrepresented students. Future work will explore how these structures do or do not persist over time and how individuals develop attitudes towards diverse individuals as a result of these interactions. We hope that the results of this work will provide practical ways to improve engineering climate for underrepresented students.more » « less