skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Future of Soils in the Midwestern United States
Abstract Soil is the source of the vast majority of food consumed on Earth, and soils constitute the largest terrestrial carbon pool. Soil erosion associated with agriculture reduces crop productivity, and the redistribution of soil organic carbon (SOC) by erosion has potential to influence the global carbon cycle. Tillage strongly influences the erosion and redistribution of soil and SOC. However, tillage is rarely considered in predictions of soil erosion in the U.S.; hence regionwide estimates of both the current magnitude and future trends of soil redistribution by tillage are unknown. Here we use a landscape evolution model to forecast soil and SOC redistribution in the Midwestern United States over centennial timescales. We predict that present‐day rates of soil and SOC erosion are 1.1 ± 0.4 kg ⋅ m−‐2 ⋅ yr−‐1and 12 ± 4 g ⋅ m−2 ⋅ yr−1, respectively, but these rates will rapidly decelerate due to diffusive evolution of topography and the progressive depletion of SOC in eroding soil profiles. After 100 years, we forecast that 8.8 (+1.9/−2.1) Pg of soil and 0.17 (+0.03/−0.04) Pg of SOC will have eroded, causing the surface concentration of SOC to decrease by 4.4% (+0.9/−1.1%). Model simulations that include more widespread adoption of low‐intensity tillage (i.e., no‐till farming) determine that soil redistribution, SOC redistribution, and surficial SOC loss after 100 years would decrease by ∼95% if low‐intensity tillage is fully adopted. Our findings indicate that low‐intensity tillage could greatly decrease soil degradation and that the potential for agricultural soil erosion to influence the global carbon cycle will diminish with time due to a reduction in SOC burial.  more » « less
Award ID(s):
1653191
PAR ID:
10415879
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
11
Issue:
5
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soil respiration that releases CO 2 into the atmosphere roughly balances the net primary productivity and varies widely in space and time. However, predicting its spatial variability, particularly in intensively managed landscapes, is challenging due to a lack of understanding of the roles of soil organic carbon (SOC) redistribution resulting from accelerated soil erosion. Here we simulate the heterotrophic carbon loss (HCL)—defined as microbial decomposition of SOC—with soil transport, SOC surface redistribution, and biogeochemical transformation in an agricultural field. The results show that accelerated soil erosion extends the spatial variation of the HCL, and the mechanical-mixing due to tillage further accentuates the contrast. The peak values of HCL occur in areas where soil transport rates are relatively small. Moreover, HCL has a strong correlation with the SOC redistribution rate rather than the soil transport rate. This work characterizes the roles of soil and SOC transport in restructuring the spatial variability of HCL at high spatio-temporal resolution. 
    more » « less
  2. Abstract Soil erosion diminishes agricultural productivity by driving the loss of soil organic carbon (SOC). The ability to predict SOC redistribution is important for guiding sustainable agricultural practices and determining the influence of soil erosion on the carbon cycle. Here, we develop a landscape evolution model that couples soil mixing and transport to predict soil loss and SOC patterns within agricultural fields. Our reduced complexity numerical model requires the specification of only two physical parameters: a plow mixing depth,Lp, and a hillslope diffusion coefficient,D. Using topography as an input, the model predicts spatial patterns of surficial SOC concentrations and complex 3D SOC pedostratigraphy. We use soil cores from native prairies to determine initial SOC‐depth relations and the spatial pattern of remote sensing‐derived SOC in adjacent agricultural fields to evaluate the model predictions. The model reproduces spatial patterns of soil loss comparable to those observed in satellite images. Our results indicate that the distribution of soil erosion and SOC in agricultural fields can be predicted using a simple geomorphic model where hillslope diffusion plays a dominant role. Such predictions can aid estimates of carbon burial and evaluate the potential for future soil loss in agricultural landscapes. 
    more » « less
  3. Soil erosion in agricultural landscapes reduces crop yields, leads to loss of ecosystem services, and influences the global carbon cycle. Despite decades of soil erosion research, the magnitude of historical soil loss remains poorly quantified across large agricultural regions because preagricultural soil data are rare, and it is challenging to extrapolate local-scale erosion observations across time and space. Here we focus on the Corn Belt of the midwestern United States and use a remote-sensing method to map areas in agricultural fields that have no remaining organic carbon-rich A-horizon. We use satellite and LiDAR data to develop a relationship between A-horizon loss and topographic curvature and then use topographic data to scale-up soil loss predictions across 3.9 × 105km2of the Corn Belt. Our results indicate that 35 ± 11% of the cultivated area has lost A-horizon soil and that prior estimates of soil degradation from soil survey-based methods have significantly underestimated A-horizon soil loss. Convex hilltops throughout the region are often completely denuded of A-horizon soil. The association between soil loss and convex topography indicates that tillage-induced erosion is an important driver of soil loss, yet tillage erosion is not simulated in models used to assess nationwide soil loss trends in the United States. We estimate that A-horizon loss decreases crop yields by 6 ± 2%, causing $2.8 ± $0.9 billion in annual economic losses. Regionally, we estimate 1.4 ± 0.5 Pg of carbon have been removed from hillslopes by erosion of the A-horizon, much of which likely remains buried in depositional areas within the fields. 
    more » « less
  4. Abstract Soil is the largest terrestrial carbon (C) reservoir and a large potential source or sink of atmospheric CO. Soil C models have usually focused on refining representations of microbe‐mediated C turnover, whereas lateral hydrologic C fluxes have largely been ignored at regional and global scales. Here, we provide large‐scale estimates of hydrologic export of soil organic carbon (SOC) and its effects on bulk soil C turnover rates. Hydrologic export of SOC ranged from nearly 0 to 12 g C m−2yr−1amongst catchments across the conterminous United States, and total export across this region was 14 (95% CI 4‐41) Tg C/yr. The proportion of soil C turnover attributed to hydrologic export ranged from <1% to 20%, and averaged 0.97% (weighted by catchment area; 95% CI 0.3%–2.6%), with the lowest values in arid catchments. Ignoring hydrologic export in C cycle models might lead to overestimation of SOC stocks by 0.3–2.6 Pg C for the conterminous United States. High uncertainty in hydrologic C export fluxes and potentially substantial effects on soil C turnover illustrate the need for research aimed at improving our mechanistic understanding of the processes regulating hydrologic C export. 
    more » « less
  5. Abstract Estimates of soil organic carbon (SOC) stocks are essential for many environmental applications. However, significant inconsistencies exist in SOC stock estimates for the U.S. across current SOC maps. We propose a framework that combines unsupervised multivariate geographic clustering (MGC) and supervised Random Forests regression, improving SOC maps by capturing heterogeneous relationships with SOC drivers. We first used MGC to divide the U.S. into 20 SOC regions based on the similarity of covariates (soil biogeochemical, bioclimatic, biological, and physiographic variables). Subsequently, separate Random Forests models were trained for each SOC region, utilizing environmental covariates and SOC observations. Our estimated SOC stocks for the U.S. (52.6 ± 3.2 Pg for 0–30 cm and 108.3 ± 8.2 Pg for 0–100 cm depth) were within the range estimated by existing products like Harmonized World Soil Database, HWSD (46.7 Pg for 0–30 cm and 90.7 Pg for 0–100 cm depth) and SoilGrids 2.0 (45.7 Pg for 0–30 cm and 133.0 Pg for 0–100 cm depth). However, independent validation with soil profile data from the National Ecological Observatory Network showed that our approach (R2 = 0.51) outperformed the estimates obtained from Harmonized World Soil Database (R2 = 0.23) and SoilGrids 2.0 (R2 = 0.39) for the topsoil (0–30 cm). Uncertainty analysis (e.g., low representativeness and high coefficients of variation) identified regions requiring more measurements, such as Alaska and the deserts of the U.S. Southwest. Our approach effectively captures the heterogeneous relationships between widely available predictors and the current SOC baseline across regions, offering reliable SOC estimates at 1 km resolution for benchmarking Earth system models. 
    more » « less