skip to main content

Title: Influence of Sand Supply and Grain Size on Equilibrium Upper Regime Bedforms

Notwithstanding the large number of studies on bedforms such as dunes and antidunes, predicting equilibrium bedform type and geometry for a given flow regime, sediment supply and caliber remains an open problem. Here, we present results from laboratory experiments specifically designed to study how upper regime bedform type and geometry vary with sediment supply and caliber. Experiments were performed in a sediment feed flume with flow rates varying between 5 and 30 l/s and sand supply rates varying between 0.6 and 20 kg/min. We used both uniform and non‐uniform sands with geometric mean diameters varying between 0.22 and 0.87 mm. Analysis of our data and data available in the literature reveals that the ratio of total (bedload plus suspension) volume transport rate of sediment to water dischargeQs/Qwplays a prime control on upper regime equilibrium beds. Equilibrium bedforms transition from washed out dunes (lower regime) to downstream migrating antidunes (upper regime) forQs/Qwbetween 0.0003 and 0.0007. For values ofQs/Qwgreater than 0.0015, the bedform length increases withQs/Qw. At these high values ofQs/Qw, equilibrium in fine sand is characterized by upstream migrating antidunes, cyclic steps, and significant suspended load. In experiments with coarse sand, equilibrium is characterized by plane bed with bedload transport in sheet flow mode. Standing waves form at the transition between downstream migrating antidunes and upstream migrating bedforms.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Turbidity current and coastal storm deposits are commonly characterized by a basal sandy massive (structureless) unit overlying an erosional surface and underlying a parallel or cross‐laminated unit. Similar sequences have been recently identified in fluvial settings as well. Notwithstanding field, laboratory and numerical studies, the mechanisms for emplacement of these massive basal units are still under debate. It is well accepted that the sequence considered here can be deposited by waning‐energy flows, and that the parallel‐laminated units are deposited under transport conditions corresponding to upper plane bed at the dune–antidune transition. Thus, transport conditions that are more intense than those at the dune–antidune transition should deposit massive units. This study presents experimental, open‐channel flow results showing that sandy massive units can be the result of gradual deposition from a thick bedload layer of colliding grains called sheet flow layer. When this layer forms with relatively coarse sand, the non‐dimensional bed shear stress associated with skin friction, the Shields number, is larger than a threshold value approximately equal to 0·4. For values of the Shields number smaller than 0·4 the sheet flow layer disappeared, sediment was transported by a standard bedload layer one or two grain diameters thick, and the bed configuration was characterized by downstream migrating antidunes and washed out dunes. Parallel laminae were found in deposits emplaced with standard bedload transport demonstrating that the same dilute flow can gradually deposit the basal and the parallel‐laminated unit in presence of traction at the depositional boundary. Further, the experiments suggested that two different types of upper plane bed conditions can be defined, one associated with standard bedload transport at the dune–antidune transition, and the other associated with bedload transport in sheet flow mode at the transition between upstream and downstream migrating antidunes.

    more » « less
  2. Abstract. Despite a rich history of studies investigating fluid dynamics over bedforms and dunes in rivers, the spatiotemporal patterns of sub-bedform bedload transport remain poorly understood. Previous experiments assessing the effects of flow separation on downstream fluid turbulent structures and bedload transport suggest that localized, intermittent, high-magnitude transport events (i.e., permeable splat events) play an important role in both downstream and cross-stream bedload transport near flow reattachment. Here, we report results from flume experiments that assess the combined effects of flow separation–reattachment and flow re-acceleration over fixed two-dimensional bedforms (1.7 cm high; 30 cm long). A high-speed camera observed bedload transport along the entirety of the bedform at 250 frames per second. Grain trajectories, grain velocities, and grain transport directions were acquired from bedload images using semiautomated particle-tracking techniques. Downstream and vertical fluid velocities were measured 3 mm above the bed using laser Doppler velocimetry (LDV) at 15 distances along the bedform profile. Mean downstream fluid velocity increases nonlinearly with increasing distance along the bedform. However, observed bedload transport increases linearly with increasing distance along the bedform, except at the crest of the bedform, where both mean downstream fluid velocity and bedload transport decrease substantially. Bedload transport time series and manual particle-tracking data show a zone of high-magnitude, cross-stream transport near flow reattachment, suggesting that permeable splat events play an essential role in the region downstream of flow reattachment.

    more » « less
  3. Abstract

    The impacts of aquatic vegetation on bed load transport rate and bedform characteristics were quantified using flume measurements with model emergent vegetation. First, a model for predicting the turbulent kinetic energy,kt, in vegetated channels from channel average velocityUand vegetation volume fractionϕwas validated for mobile sediment beds. Second, using data from several studies, the predictedktwas shown to be a good predictor of bed load transport rate,Qs, allowingQsto be predicted fromUandϕfor vegetated channels. The control ofQsbyktwas explained by statistics of individual grain motion recorded by a camera, which showed that the number of sediment grains in motion per bed area was correlated withkt. Third, ripples were observed and characterized in channels with and without model vegetation. For low vegetation solid volume fraction (ϕ ≤ 0.012), the ripple wavelength was constrained by stem spacing. However, at higher vegetation solid volume fraction (ϕ=0.025), distinct ripples were not observed, suggesting a transition to sheet flow, which is sediment transport over a plane bed without the formation of bedforms. The fraction of the bed load flux carried by migrating ripples decreased with increasingϕ, again suggesting that vegetation facilitated the formation of sheet flow.

    more » « less
  4. Abstract

    Bedload transport is an important mechanism for sediment flux in the nearshore. Yet few studies examine the relationship between bedform evolution and net sediment transport. Our work contributes concurrent observations of bedform mobility and bedload transport in response to wave dominant, current dominant, and combined wave‐current flows in the nearshore. Bedload sediment flux from migrating bedforms during combined wave‐current conditions accounted for at least 20% more bedload transport when compared with wave dominant flows and at least 80% more than current‐dominant flows. Bedforms were observed to transport the most sediment during periods with strong currents, with high‐energy skewed waves, and while bedform orientation and transport direction were aligned. Regardless of flow type, bedform migration rates were directly proportional to the total kinetic energy contained in the flow field. Eleven bedload transport models formulated to be used in combined flows (both shear and energetics based) were compared with sediment flux estimated from measured bedform migration. An energetics based sediment transport model was most representative for our data.

    more » « less
  5. Abstract

    Stream hydromorphology regulates in‐stream water flow and interstitial flow of water within streambed sediments, the latter known as hyporheic exchange. Whereas hyporheic flow has been studied in sand‐bedded streams with ripples and dunes and in gravel‐bedded streams with pool‐riffle morphology, little is known about its characteristics in plane bed morphology with subdued streambed undulations and sparse macroroughness elements such as boulders and cobbles. Here, we present a proof‐of‐concept investigation on the role of boulder‐induced morphological changes on hyporheic flows based on coupling large‐scale flume sediment transport experiments with computational fluid dynamics. Our results show that placement of boulders on plane beds increase the reach‐scale hyporheic median residence time,τ50, by 15% and downwelling flux,qd, by 18% from the plane bed. However, reach‐scale hyporheic exchange changes are stronger withτ50decreasing by 20% andqdincreasing by 79% once the streambed morphology reached equilibrium (with the imposed upstream sediment and flow inputs on boulders). These results suggest that hyporheic flow is sensitive to the geomorphic response from bed topography and sediment transport in gravel‐bedded streams, a process that has been overlooked in previous work.

    more » « less