skip to main content


Title: Impact of Vegetation on Bed Load Transport Rate and Bedform Characteristics
Abstract

The impacts of aquatic vegetation on bed load transport rate and bedform characteristics were quantified using flume measurements with model emergent vegetation. First, a model for predicting the turbulent kinetic energy,kt, in vegetated channels from channel average velocityUand vegetation volume fractionϕwas validated for mobile sediment beds. Second, using data from several studies, the predictedktwas shown to be a good predictor of bed load transport rate,Qs, allowingQsto be predicted fromUandϕfor vegetated channels. The control ofQsbyktwas explained by statistics of individual grain motion recorded by a camera, which showed that the number of sediment grains in motion per bed area was correlated withkt. Third, ripples were observed and characterized in channels with and without model vegetation. For low vegetation solid volume fraction (ϕ ≤ 0.012), the ripple wavelength was constrained by stem spacing. However, at higher vegetation solid volume fraction (ϕ=0.025), distinct ripples were not observed, suggesting a transition to sheet flow, which is sediment transport over a plane bed without the formation of bedforms. The fraction of the bed load flux carried by migrating ripples decreased with increasingϕ, again suggesting that vegetation facilitated the formation of sheet flow.

 
more » « less
NSF-PAR ID:
10456791
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
55
Issue:
7
ISSN:
0043-1397
Page Range / eLocation ID:
p. 6109-6124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Laboratory experiments examined the impact of model vegetation on wave‐driven resuspension. Model canopies were constructed from cylinders with three diameters (d= 0.32, 0.64, and 1.26 cm) and 12 densities (cylinders/m2) up to a solid volume fraction (ϕ) of 10%. The sediment bed consisted of spherical grains withd50= 85 μm. For each experiment, the wave velocity was gradually adjusted by increasing the amplitude of 2‐s waves in a stepwise fashion. A Nortek Vectrino sampled the velocity atz= 1.3 cm above the bed. The critical wave orbital velocity for resuspension was inferred from records of suspended sediment concentration (measured with optical backscatter) as a function of wave velocity. The critical wave velocity decreased with increasing solid volume fraction. The reduction in critical wave velocity was linked to stem‐generated turbulence, which, for the same wave velocity, increased with increasing solid volume fraction. The measured turbulence was consistent with a wave‐modified version of a stem‐turbulence model. The measurements suggested that a critical value of turbulent kinetic energy was needed to initiate resuspension, and this was used to define the critical wave velocity as a function of solid volume fraction. The model predicted the measured critical wave velocity for stem diametersd= 0.64 to 2 cm. Combining the critical wave velocity with an existing model for wave damping defined the meadow size for which wave damping would be sufficient to suppress wave‐induced sediment suspension within the interior of the meadow.

     
    more » « less
  2. Abstract

    Notwithstanding the large number of studies on bedforms such as dunes and antidunes, predicting equilibrium bedform type and geometry for a given flow regime, sediment supply and caliber remains an open problem. Here, we present results from laboratory experiments specifically designed to study how upper regime bedform type and geometry vary with sediment supply and caliber. Experiments were performed in a sediment feed flume with flow rates varying between 5 and 30 l/s and sand supply rates varying between 0.6 and 20 kg/min. We used both uniform and non‐uniform sands with geometric mean diameters varying between 0.22 and 0.87 mm. Analysis of our data and data available in the literature reveals that the ratio of total (bedload plus suspension) volume transport rate of sediment to water dischargeQs/Qwplays a prime control on upper regime equilibrium beds. Equilibrium bedforms transition from washed out dunes (lower regime) to downstream migrating antidunes (upper regime) forQs/Qwbetween 0.0003 and 0.0007. For values ofQs/Qwgreater than 0.0015, the bedform length increases withQs/Qw. At these high values ofQs/Qw, equilibrium in fine sand is characterized by upstream migrating antidunes, cyclic steps, and significant suspended load. In experiments with coarse sand, equilibrium is characterized by plane bed with bedload transport in sheet flow mode. Standing waves form at the transition between downstream migrating antidunes and upstream migrating bedforms.

     
    more » « less
  3. null (Ed.)
    Abstract Mangrove swamps are extremely productive ecosystems providing many ecological services in coastal regions. The hydrodynamic interactions of mangrove roots and water flow have been proposed as a key element to mitigate erosion. Several studies reveal that precise prediction of the morphological evolution of coastal areas, in the face of global warming and the consequent sea-level rise, requires an understanding of interactions between root porosity (the fraction of the volume of void space over the total volume), water flows, and sediment transport. Water flows around the mangrove prop roots create a complex energetic process that mixes up sediments and generates a depositional region posterior to the roots. In this work, we investigated the boundary layer behind permeable arrays of cylinders (patch) that represent the mangrove roots to explore the impact of patch porosity on the onset of sediment transport. The flow measurements were performed in a vertical plane along the water depth downstream of the mangrove root models. A high-resolution Particle Image Velocimetry (PIV) was used in a flume to observe the impact of porosity on the mean flow, velocity derivatives, skin friction coefficient, and production of turbulent kinetic energy for Reynolds number of 2500 (based on patch diameter length-scale). Here, we proposed a predictive model for critical velocity for incipient motion that takes into account the mangrove roots porosity and the near-bed turbulence effect. It is found that the patch with the $$\phi =47\%$$ ϕ = 47 % porosity, has the maximum critical velocity over which the sediment transport initiates. We found the optimum porosity has the minimum sediment erosion and creates negative vorticity sources near the bed that increases the critical velocity. This signifies an optimum porosity for the onset of sediment transport consistent with the porosity of mangroves in nature. The phenomenological model is elucidated based on an analysis of the vorticity evolution equation for viscous incompressible flows. For the optimum porous patch, a sink of vorticity was formed which yielded to lower the near-bed turbulence and vorticity. The minimum velocity fluctuations were sufficient to initiate the boundary layer transition, however, the viscous dissipation dominated the turbulence production to obstruct the sediment transport. This work identified the pivotal role of mangrove root porosity in sediment transport in terms of velocity and its derivatives in wall-bounded flows. Our work also provides insight into the sediment transport and erosion processes that govern the evolution of the shapes of shorelines. 
    more » « less
  4. Abstract

    The need for operational models describing the friction factorfin streams remains undisputed given its utility across a plethora of hydrological and hydraulic applications concerned with shallow inertial flows. For small-scale roughness elements uniformly covering the wetted parameter of a wide channel, the Darcy-Weisbachf = 8(u*/Ub)2is widely used at very high Reynolds numbers, whereu*is friction velocity related to the surface kinematic stress,Ub = Q/Ais bulk velocity,Qis flow rate, andAis cross-sectional area orthogonal to the flow direction. In natural streams, the presence of vegetation introduces additional complications to quantifyingf, the subject of the present work. Turbulent flow through vegetation are characterized by a number of coherent vortical structures: (i) von Karman vortex streets in the lower layers of vegetated canopies, (ii) Kelvin-Helmholtz as well as attached eddies near the vegetation top, and (iii) attached eddies well above the vegetated layer. These vortical structures govern the canonical mixing lengths for momentum transfer and their influence onfis to be derived. The main novelty is that the friction factor of vegetated flow can be expressed asfv = 4Cd(Uv/Ub)2whereUvis the spatially averaged velocity within the canopy volume, andCdis a local drag coefficient per unit frontal area derived to include the aforemontioned layer-wise effects of vortical structures within and above the canopy along with key vegetation properties. The proposed expression is compared with a number of empirical relations derived for vegetation under emergent and submerged conditions as well as numerous data sets covering a wide range of canopy morphology, densities, and rigidity. It is envisaged that the proposed formulation be imminently employed in eco-hydraulics where the interaction between flow and vegetation is being sought.

     
    more » « less
  5. Abstract

    Stream hydromorphology regulates in‐stream water flow and interstitial flow of water within streambed sediments, the latter known as hyporheic exchange. Whereas hyporheic flow has been studied in sand‐bedded streams with ripples and dunes and in gravel‐bedded streams with pool‐riffle morphology, little is known about its characteristics in plane bed morphology with subdued streambed undulations and sparse macroroughness elements such as boulders and cobbles. Here, we present a proof‐of‐concept investigation on the role of boulder‐induced morphological changes on hyporheic flows based on coupling large‐scale flume sediment transport experiments with computational fluid dynamics. Our results show that placement of boulders on plane beds increase the reach‐scale hyporheic median residence time,τ50, by 15% and downwelling flux,qd, by 18% from the plane bed. However, reach‐scale hyporheic exchange changes are stronger withτ50decreasing by 20% andqdincreasing by 79% once the streambed morphology reached equilibrium (with the imposed upstream sediment and flow inputs on boulders). These results suggest that hyporheic flow is sensitive to the geomorphic response from bed topography and sediment transport in gravel‐bedded streams, a process that has been overlooked in previous work.

     
    more » « less