About 40% of the energy produced globally is consumed within buildings, primarily for providing occupants with comfortable work and living spaces. However, despite the significant impacts of such energy consumption on the environment, the lack of thermal comfort among occupants is a common problem that can lead to health complications and reduced productivity. To address this problem, it is particularly important to understand occupants’ thermal comfort in real-time to dynamically control the environment. This study investigates an infrared thermal camera network to extract skin temperature features and predict occupants’ thermal preferences at flexible distances and angles. This study distinguishes from existing methods in two ways: (1) the proposed method is a non-intrusive data collection approach which does not require human participation or personal devices; (2) it uses low-cost thermal cameras and RGB-D sensors which can be rapidly reconfigured to adapt to various settings and has little or no hardware infrastructure dependency. The proposed camera network is verified using the facial skin temperature collected from 16 subjects in a multi-occupancy experiment. The results show that all 16 subjects observed a statistically higher skin temperature as the room temperature increases. The variations in skin temperature also correspond to the distinct comfort states reported by the subjects. The post-experiment evaluation suggests that the networked thermal cameras have a minimal interruption
of building occupants. The proposed approach demonstrates the potential to transition the human physiological data collection from an intrusive and wearable device-based approach to a truly non-intrusive and scalable approach.
more »
« less
SoFIT: Self-Orienting Camera Network for Floor Mapping and Indoor Tracking
We present SoFIT, an easily-deployed and privacy-preserving camera network system for occupant tracking. Unlike traditional camera network-based systems, SoFIT does not require a person to calibrate the network or provide real-world references. This enables anyone, including non-professionals, to install SoFIT. Once installed, SoFIT automatically localizes cameras within the network and generates the floor map leveraging movements of people using the space in daily life, before using the floor map and camera locations to track occupants throughout the environment. We demonstrate through a series of deployments that SoFIT can localize cameras with less than 4.8cm error, generate floor maps with 85% similarity to actual floor maps, and track occupants with less than 7.8cm error.
more »
« less
- PAR ID:
- 10416035
- Date Published:
- Journal Name:
- 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)
- Page Range / eLocation ID:
- 93 to 100
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Wireless security cameras are integral components of security systems used by military installations, corporations, and, due to their increased affordability, many private homes. These cameras commonly employ motion sensors to identify that something is occurring in their fields of vision before starting to record and notifying the property owner of the activity. In this paper, we discover that the motion sensing action can disclose the location of the camera through a novel wireless camera localization technique we call MotionCompass. In short, a user who aims to avoid surveillance can find a hidden camera by creating motion stimuli and sniffing wireless traffic for a response to that stimuli. With the motion trajectories within the motion detection zone, the exact location of the camera can be then computed. We develop an Android app to implement MotionCompass. Our extensive experiments using the developed app and 18 popular wireless security cameras demonstrate that for cameras with one motion sensor, MotionCompass can attain a mean localization error of around 5 cm with less than 140 seconds. This localization technique builds upon existing work that detects the existence of hidden cameras, to pinpoint their exact location and area of surveillance.more » « less
-
Modern cities have hundreds to thousands of traffic cameras distributed across them, many of them with the capa- bility to pan and tilt, but very often these pan and tilt cameras either do not have angle sensors or do not provide camera orientation feedback. This makes it difficult to robustly track traffic using these cameras. Several methods to automatically detect the camera pose have been proposed in literature, with the most popular and robust being deep learning-based approaches. However, they are compute intensive, require large amounts of training data, and generally cannot be run on embedded devices. In this paper, we propose TIPAngle – a Siamese neural network, lightweight training, and a highly optimized inference mechanism and toolset to estimate camera pose and thereby improve traffic tracking even when operators change the pose of the traffic cameras. TIPAngle is 18.45x times faster and 3x more accurate in determining the angle of a camera frame than a ResNet-18 based approach. We deploy TIPAngle to a Raspberry Pi CPU and show that processing an image takes an average of .057s, equating to a frequency of about 17Hz on an embedded device.more » « less
-
This paper proposes a system architecture for tracking multiple ground-based objects using a team of unmanned air systems (UAS). In the architecture pipeline, video data is processed by each UAS to detect motion in the image frame. The ground-based location of the detected motion is estimated using a geolocation algorithm. The subsequent data points are then process by the recently introduced Recursive RANSAC (R-RANSASC) algorithm to produce a set of tracks. These tracks are then communicated over the network and the error in the coordinate frames between vehicles must be estimated. After the tracks have been placed in the same coordinate frame, a track-to-track association algorithm is used to determine which tracks in each camera correspond to tracks in other cameras. Associated tracks are then fused using a distributed information filter. The proposed method is demonstrated on data collected from two multi-rotors tracking a person walking on the ground.more » « less
-
We consider a scenario in which an autonomous vehicle equipped with a downward-facing camera operates in a 3D environment and is tasked with searching for an unknown number of stationary targets on the 2D floor of the environment. The key challenge is to minimize the search time while ensuring a high detection accuracy. We model the sensing field using a multi-fidelity Gaussian process that systematically describes the sensing information available at different altitudes from the floor. Based on the sensing model, we design a novel algorithm called Expedited Multi-Target Search (EMTS) that (i) addresses the coverage-accuracy trade-off: sampling at locations farther from the floor provides a wider field of view but less accurate measurements, (ii) computes an occupancy map of the floor within a prescribed accuracy and quickly eliminates unoccupied regions from the search space, and (iii) travels efficiently to collect the required samples for target detection. We rigorously analyze the algorithm and establish formal guarantees on the target detection accuracy and the detection time. We illustrate the algorithm using a simulated multi-target search scenario.more » « less