skip to main content

Title: Optimizing Performance and Computing Resource Management of In-memory Big Data Analytics with Disaggregated Persistent Memory
The performance of modern Big Data frameworks, e.g. Spark, depends greatly on high-speed storage and shuffling, which impose a significant memory burden on production data centers. In many production situations, the persistence and shuffling intensive applications can suffer a major performance loss due to lack of memory. Thus, the common practice is usually to over-allocate the memory assigned to the data workers for production applications, which in turn reduces overall resource utilization. One efficient way to address the dilemma between the performance and cost efficiency of Big Data applications is through data center computing resource disaggregation. This paper proposes and implements a system that incorporates the Spark Big Data framework with a novel in-memory distributed file system to achieve memory disaggregation for data persistence and shuffling. We address the challenge of optimizing performance at affordable cost by co-designing the proposed in-memory distributed file system with large-volume DIMM-based persistent memory (PMEM) and RDMA technology. The disaggregation design allows each part of the system to be scaled independently, which is particularly suitable for cloud deployments. The proposed system is evaluated in a production-level cluster using real enterprise-level Spark production applications. The results of an empirical evaluation show that the system can achieve more » up to a 3.5- fold performance improvement for shuffle-intensive applications with the same amount of memory, compared to the default Spark setup. Moreover, by leveraging PMEM, we demonstrate that our system can effectively increase the memory capacity of the computing cluster with affordable cost, with a reasonable execution time overhead with respect to using local DRAM only. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1826997 1640834 1835692 1745246
Publication Date:
NSF-PAR ID:
10158247
Journal Name:
2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)
Page Range or eLocation-ID:
21 to 30
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)
    The goal of this work was to design a low-cost computing facility that can support the development of an open source digital pathology corpus containing 1M images [1]. A single image from a clinical-grade digital pathology scanner can range in size from hundreds of megabytes to five gigabytes. A 1M image database requires over a petabyte (PB) of disk space. To do meaningful work in this problem space requires a significant allocation of computing resources. The improvements and expansions to our HPC (highperformance computing) cluster, known as Neuronix [2], required to support working with digital pathology fall into two broad categories: computation and storage. To handle the increased computational burden and increase job throughput, we are using Slurm [3] as our scheduler and resource manager. For storage, we have designed and implemented a multi-layer filesystem architecture to distribute a filesystem across multiple machines. These enhancements, which are entirely based on open source software, have extended the capabilities of our cluster and increased its cost-effectiveness. Slurm has numerous features that allow it to generalize to a number of different scenarios. Among the most notable is its support for GPU (graphics processing unit) scheduling. GPUs can offer a tremendous performance increase inmore »machine learning applications [4] and Slurm’s built-in mechanisms for handling them was a key factor in making this choice. Slurm has a general resource (GRES) mechanism that can be used to configure and enable support for resources beyond the ones provided by the traditional HPC scheduler (e.g. memory, wall-clock time), and GPUs are among the GRES types that can be supported by Slurm [5]. In addition to being able to track resources, Slurm does strict enforcement of resource allocation. This becomes very important as the computational demands of the jobs increase, so that they have all the resources they need, and that they don’t take resources from other jobs. It is a common practice among GPU-enabled frameworks to query the CUDA runtime library/drivers and iterate over the list of GPUs, attempting to establish a context on all of them. Slurm is able to affect the hardware discovery process of these jobs, which enables a number of these jobs to run alongside each other, even if the GPUs are in exclusive-process mode. To store large quantities of digital pathology slides, we developed a robust, extensible distributed storage solution. We utilized a number of open source tools to create a single filesystem, which can be mounted by any machine on the network. At the lowest layer of abstraction are the hard drives, which were split into 4 60-disk chassis, using 8TB drives. To support these disks, we have two server units, each equipped with Intel Xeon CPUs and 128GB of RAM. At the filesystem level, we have implemented a multi-layer solution that: (1) connects the disks together into a single filesystem/mountpoint using the ZFS (Zettabyte File System) [6], and (2) connects filesystems on multiple machines together to form a single mountpoint using Gluster [7]. ZFS, initially developed by Sun Microsystems, provides disk-level awareness and a filesystem which takes advantage of that awareness to provide fault tolerance. At the filesystem level, ZFS protects against data corruption and the infamous RAID write-hole bug by implementing a journaling scheme (the ZFS intent log, or ZIL) and copy-on-write functionality. Each machine (1 controller + 2 disk chassis) has its own separate ZFS filesystem. Gluster, essentially a meta-filesystem, takes each of these, and provides the means to connect them together over the network and using distributed (similar to RAID 0 but without striping individual files), and mirrored (similar to RAID 1) configurations [8]. By implementing these improvements, it has been possible to expand the storage and computational power of the Neuronix cluster arbitrarily to support the most computationally-intensive endeavors by scaling horizontally. We have greatly improved the scalability of the cluster while maintaining its excellent price/performance ratio [1].« less
  2. Resource disaggregation (RD) is an emerging paradigm for data center computing whereby resource-optimized servers are employed to minimize resource fragmentation and improve resource utilization. Apache Spark deployed under the RD paradigm employs a cluster of compute-optimized servers to run executors and a cluster of storage-optimized servers to host the data on HDFS. However, the network transfer from storage to compute cluster becomes a severe bottleneck for big data processing. Near-data processing (NDP) is a concept that aims to alleviate network load in such cases by offloading (or “pushing down”) some of the compute tasks to the storage cluster. Employing NDP for Spark under the RD paradigm is challenging because storage-optimized servers have limited computational resources and cannot host the entire Spark processing stack. Further, even if such a lightweight stack could be developed and deployed on the storage cluster, it is not entirely obvious which Spark queries would benefit from pushdown, and which tasks of a given query should be pushed down to storage. This paper presents the design and implementation of a near-data processing system for Spark, SparkNDP, that aims to address the aforementioned challenges. SparkNDP works by implementing novel NDP Spark capabilities on the storage cluster using amore »lightweight library of SQL operators and then developing an analytical model to help determine which Spark tasks should be pushed down to storage based on the current network and system state. Simulation and prototype implementation results show that SparkNDP can help reduce Spark query execution times when compared to both the default approach of not pushing down any tasks to storage and the outright NDP approach of pushing all tasks to storage.« less
  3. Emerging hybrid memory systems that comprise technologies such as Intel's Optane DC Persistent Memory, exhibit disparities in the access speeds and capacity ratios of their heterogeneous memory components. This breaks many assumptions and heuristics designed for traditional DRAM-only platforms. High application performance is feasible via dynamic data movement across memory units, which maximizes the capacity use of DRAM while ensuring efficient use of the aggregate system resources. Newly proposed solutions use performance models and machine intelligence to optimize which and how much data to move dynamically. However, the decision of when to move this data is based on empirical selection of time intervals, or left to the applications. Our experimental evaluation shows that failure to properly conFigure the data movement frequency can lead to 10%-100% performance degradation for a given data movement policy; yet, there is no established methodology on how to properly conFigure this value for a given workload, platform and policy. We propose Cori, a system-level tuning solution that identifies and extracts the necessary application-level data reuse information, and guides the selection of data movement frequency to deliver gains in application performance and system resource efficiency. Experimental evaluation shows that Cori configures data movement frequencies that provide applicationmore »performance within 3% of the optimal one, and that it can achieve this up to 5 x more quickly than random or brute-force approaches. System-level validation of Cori on a platform with DRAM and Intel's Optane DC PMEM confirms its practicality and tuning efficiency.« less
  4. Large-scale enterprise computing systems are growing rapidly, to address the increasing demand for data processing; however, in many cases, the computing resources in a single data center may not be sufficient for critical data-centric workloads, and important factors, such as space limitations, power availability, or company policies, limit the possibilities of expanding the data center's resources. In this paper, we explore the potential of harvesting spare computing resources across geo-distributed data centers with fast fabric interconnection for real-world enterprise applications. We specifically characterize the computing resource utilization of four large-scale production data centers, and we show how to efficiently combine local storage and computing clusters with remote and elastic computation resources. The primary challenge is incorporating the available remote computing resources efficiently. To achieve this goal, we propose leveraging the capabilities of Kubernetes-based elastic computing clusters to utilize the spare computing resources across geo-distributed data centers for Big Data applications. We also provide an experimental performance evaluation based on real-use case scenarios via an empirical execution and a simulation, which shows that the proposed system can accelerate Big Data services by employing existing computing resources more efficiently across geo-distributed data centers.
  5. Using flash-based solid state drives (SSDs) as main memory has been proposed as a practical solution towards scaling memory capacity for data-intensive applications. However, almost all existing approaches rely on the paging mechanism to move data between SSDs and host DRAM. This inevitably incurs significant performance overhead and extra I/O traffic. Thanks to the byte-addressability supported by the PCIe interconnect and the internal memory in SSD controllers, it is feasible to access SSDs in both byte and block granularity today. Exploiting the benefits of SSD's byte-accessibility in today's memory-storage hierarchy is, however, challenging as it lacks systems support and abstractions for programs. In this paper, we present FlatFlash, an optimized unified memory-storage hierarchy, to efficiently use byte-addressable SSD as part of the main memory. We extend the virtual memory management to provide a unified memory interface so that programs can access data across SSD and DRAM in byte granularity seamlessly. We propose a lightweight, adaptive page promotion mechanism between SSD and DRAM to gain benefits from both the byte-addressable large SSD and fast DRAM concurrently and transparently, while avoiding unnecessary page movements. Furthermore, we propose an abstraction of byte-granular data persistence to exploit the persistence nature of SSDs, upon whichmore »we rethink the design primitives of crash consistency of several representative software systems that require data persistence, such as file systems and databases. Our evaluation with a variety of applications demonstrates that, compared to the current unified memory-storage systems, FlatFlash improves the performance for memory-intensive applications by up to 2.3x, reduces the tail latency for latency-critical applications by up to 2.8x, scales the throughput for transactional database by up to 3.0x, and decreases the meta-data persistence overhead for file systems by up to 18.9x. FlatFlash also improves the cost-effectiveness by up to 3.8x compared to DRAM-only systems, while enhancing the SSD lifetime significantly.« less