skip to main content


Title: Astragaloside IV alleviates lipopolysaccharide‐induced preeclampsia‐like phenotypes via suppressing the inflammatory responses
Abstract

Preeclampsia (PE) is a major cause of perinatal and maternal mortality and morbidity, which affects 2% to 8% of pregnancies in the world. The aberrant maternal inflammation and angiogenic imbalance have been demonstrated to contribute to the pathogenesis of PE. This research aimed to investigate the effect of Astragaloside IV (AsIV) in the treatment of PE and the underlying mechanisms. A rat PE‐like model was established by tail vein injection of lipopolysaccharide (LPS) and different doses of AsIV (40 and 80 mg/kg) were treated at the same time. Systolic blood pressure, total urine protein and urine volume were observed. Serum and placenta inflammatory cytokines were measured by ELISA kit. The mRNA and protein expression of relative genes were analyzed by qRT‐PCR and Western blotting. In PE‐like rats, there were obvious increases in systolic blood pressure, total urine protein and urine volume, which were obviously alleviated by treatment with AsIV. Serum levels of interleukin (IL)‐1β, tumor necrosis factor alpha (TNF‐α), IL‐6 and IL‐18, as well as IL‐4, IL‐10, PIGF, VEGF and sFlt‐1, were all reversed by treatment with AsIV. Meanwhile, AsIV treatment improved abnormal pregnancy outcomes, such as low litter size and low fetal weight. In addition, AsIV treatment downregulated the mRNA expression of inflammatory gene IL‐1β and IL‐6 in PE rats model, and AsIV treatment inhibited the activation of TLR‐4, NF‐κB, and sFlt‐1 in the placenta of PE rats. Our findings indicated the first evidence that AsIV alleviated PE‐like signs, and this improvement effect is possibly through inhibition of inflammation response via the TLR4/NF‐κB signaling pathway.

 
more » « less
NSF-PAR ID:
10453154
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Kaohsiung Journal of Medical Sciences
Volume:
37
Issue:
3
ISSN:
1607-551X
Page Range / eLocation ID:
p. 236-244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Surfactant protein D (SP-D) is a C-type collectin and plays an important role in innate immunity and homeostasis in the lung. This study studied SP-D role in the nontypeable Haemophilus influenzae (NTHi)-induced otitis media (OM) mouse model. Wild-type C57BL/6 (WT) and SP-D knockout (KO) mice were used in this study. Mice were injected in the middle ear (ME) with 5 μL of NTHi bacterial solution (3.5 × 105 CFU/ear) or with the same volume of sterile saline (control). Mice were sacrificed at 3 time points, days 1, 3, and 7, after treatment. We found SP-D expression in the Eustachian tube (ET) and ME mucosa of WT mice but not in SP-D KO mice. After infection, SP-D KO mice showed more intense inflammatory changes evidenced by the increased mucosal thickness and inflammatory cell infiltration in the ME and ET compared to WT mice (p < 0.05). Increased bacterial colony-forming units and cytokine (IL-6 and IL-1β) levels in the ear washing fluid of infected SP-D KO mice were compared to infected WT mice. Molecular analysis revealed higher levels of NF-κB and NLRP3 activation in infected SP-D KO compared to WT mice (p < 0.05). In vitro studies demonstrated that SP-D significantly induced NTHi bacterial aggregation and enhanced bacterial phagocytosis by macrophages (p < 0.05). Furthermore, human ME epithelial cells showed a dose-dependent increased expression of NLRP3 and SP-D proteins after LPS treatment. We conclude that SP-D plays a critical role in innate immunity and disease resolution through enhancing host defense and regulating inflammatory NF-κB and NLRP3 activation in experimental OM mice. 
    more » « less
  2. Abstract Background Plasma gelsolin (pGSN) is an important part of the blood actin buffer that prevents negative consequences of possible F-actin deposition in the microcirculation and has various functions during host immune response. Recent reports reveal that severe COVID-19 correlates with reduced levels of pGSN. Therefore, using an in vitro system, we investigated whether pGSN could attenuate increased permeability of the blood–brain barrier (BBB) during its exposure to the portion of the SARS-CoV-2 spike protein containing the receptor binding domain (S1 subunit). Materials and methods Two- and three-dimensional models of the human BBB were constructed using the human cerebral microvascular endothelial cell line hCMEC/D3 and exposed to physiologically relevant shear stress to mimic perfusion in the central nervous system (CNS). Trans-endothelial electrical resistance (TEER) as well as immunostaining and Western blotting of tight junction (TJ) proteins assessed barrier integrity in the presence of the SARS-CoV-2 spike protein and pGSN. The IncuCyte Live Imaging system evaluated the motility of the endothelial cells. Magnetic bead-based ELISA was used to determine cytokine secretion. Additionally, quantitative real-time PCR (qRT-PCR) revealed gene expression of proteins from signaling pathways that are associated with the immune response. Results pGSN reversed S1-induced BBB permeability in both 2D and 3D BBB models in the presence of shear stress. BBB models exposed to pGSN also exhibited attenuated pro-inflammatory signaling pathways (PI3K, AKT, MAPK, NF-κB), reduced cytokine secretion (IL-6, IL-8, TNF-α), and increased expression of proteins that form intercellular TJ (ZO-1, occludin, claudin-5). Conclusion Due to its anti-inflammatory and protective effects on the brain endothelium, pGSN has the potential to be an alternative therapeutic target for patients with severe SARS-CoV-2 infection, especially those suffering neurological complications of COVID-19. 
    more » « less
  3. Abstract

    While it is well known that mechanical signals can either promote or disrupt intervertebral disc (IVD) homeostasis, the molecular mechanisms for transducing mechanical stimuli are not fully understood. The transient receptor potential vanilloid 4 (TRPV4) ion channel activated in isolated IVD cells initiates extracellular matrix (ECM) gene expression, while TRPV4 ablation reduces cytokine production in response to circumferential stretching. However, the role of TRPV4 on ECM maintenance during tissue‐level mechanical loading remains unknown. Using an organ culture model, we modulated TRPV4 function over both short‐ (hours) and long‐term (days) and evaluated the IVDs' response. Activating TRPV4 with the agonist GSK101 resulted in a Ca2+flux propagating across the cells within the IVD. Nuclear factor (NF)‐κB signaling in the IVD peaked at 6 h following TRPV4 activation that subsequently resulted in higher interleukin (IL)‐6 production at 7 days. These cellular responses were concomitant with the accumulation of glycosaminoglycans and increased hydration in the nucleus pulposus that culminated in higher stiffness of the IVD. Sustained compressive loading of the IVD resulted in elevated NF‐κB activity, IL‐6 and vascular endothelial growth factor A (VEGFA) production, and degenerative changes to the ECM. TRPV4 inhibition using GSK205 during loading mitigated the changes in inflammatory cytokines, protected against IVD degeneration, but could not prevent ECM disorganization due to mechanical damage in the annulus fibrosus. These results indicate TRPV4 plays an important role in both short‐ and long‐term adaptations of the IVD to mechanical loading. The modulation of TRPV4 may be a possible therapeutic for preventing load‐induced IVD degeneration.

     
    more » « less
  4. Abstract

    Psoriasis is a common non-contagious chronic inflammatory skin lesion, with frequent recurrence. It mainly occurs due to aberrant regulation of the immune system leading to abnormal proliferation of skin cells. However, the pathogenic mechanisms of psoriasis are not fully understood. Although most of the current therapies are mostly efficient, the side effects can result in therapy stop, which makes the effectiveness of treatment strategies limited. Therefore, it is urgent and necessary to develop novel therapeutics. Here, we investigated the efficacy of chrysin, a plant flavonoid, which we previously reported to possess strong antioxidant and anti-inflammatory effects, against psoriasis-like inflammation. Our results revealed that chrysin significantly attenuated imiquimod-induced psoriasis-like skin lesions in mice, and improved imiquimod-induced disruption of skin barrier. Moreover, the TNF-α, IL-17A, and IL-22-induced phosphorylation of MAPK and JAK-STAT pathways, and activation of the NF-κB pathway were also attenuated by chrysin pretreatment of epidermal keratinocytes. Most importantly, chrysin reduced TNF-α-, IL-17A-, and IL-22-induced CCL20 and antimicrobial peptide release from epidermal keratinocytes. Thus, our findings indicate that chrysin may have therapeutic potential against inflammatory skin diseases. Our study provides a basis for further investigating chrysin as a novel pharmacologic agent and contributes to the academic advancement in the field of Chinese herbal medicine.

     
    more » « less
  5. null (Ed.)
    Activation of the CB2 receptor has been shown to have anti-inflammatory and antinociceptive effects without causing psychoactive effects. Previously, we reported that the compound ethyl 2(2-(N-(2,3-dimethylphenyl) phenylsulfonamido)acetamido)benzoate (ABK5) is a CB2 subtype selective agonist with anti-inflammatory and antinociceptive effects. In the present study, we tested four ABK5 derivatives, ABK5-1, ABK5-2, ABK5-5, and ABK5-6, to analyze the structure of ABK5 to obtain CB2-selective agonists with higher affinity and efficacy. Affinity, subtype selectivity, and G-protein coupling were determined by radioligand binding assays. Selected compounds were then subjected to evaluation of anti-inflammatory effects using two different cell lines, Jurkat (ABK5-1 and 5-2) and BV-2 cells (ABK5-1), which are models of T cells and microglia, respectively. ABK5-1, ABK5-2, and ABK5-6 had comparable CB2 binding affinity with ABK5 (and stimulated G-protein coupling), while only ABK5-1 and ABK5-2 maintained CB2-subtype selectivity. ABK5-5 did not bind CB2 in the detectable range. RT-PCR and ELISA analysis showed that the two compounds also inhibit IL-2 and TNF-α production, and they were more efficacious than ABK5 in inhibiting TNF-α production. CXCL-12 mediated chemotaxis was also evaluated by the transwell migration assay, and both ABK5-1 and ABK5-2 inhibited chemotaxis with a stronger effect observed in ABK5-1. In the microglia cell line BV-2, ABK5-1 inhibited IL-1β and IL-6 production, which suggests this compound has anti-inflammatory effects through targeting multiple immune cells, and may be a candidate for treatment of inflammation. 
    more » « less