Abstract In Earth’s current climate, moist convective updraft speeds increase with surface warming. This trend suggests that very vigorous convection might be the norm in extremely hot and humid atmospheres, such as those undergoing a runaway greenhouse transition. However, theoretical and numerical evidence suggests that convection is actually gentle in water-vapor-dominated atmospheres, implying that convective vigor may peak at some intermediate humidity level. Here, we perform small-domain convection-resolving simulations of an Earth-like atmosphere over a wide range of surface temperatures and confirm that there is indeed a peak in convective vigor, which we show occurs nearTs≃ 330 K. We show that a similar peak in convective vigor exists when the relative abundance of water vapor is changed by varying the amount of background (noncondensing) gas at fixedTs, which may have implications for Earth’s climate and atmospheric chemistry during the Hadean and Archean eons. We also show that Titan-like thermodynamics (i.e., a thick nitrogen atmosphere with condensing methane and low gravity) produce a peak in convective vigor atTs≃ 95 K, which is curiously close to the current surface temperature of Titan. Plotted as functions of the saturation-specific humidity at cloud base, metrics of convective vigor from both Earth-like and Titan-like experiments all peak when cloud-base air contains roughly 10% of the condensible gas by mass. Our results point to a potentially common phenomenon in terrestrial atmospheres: that moist convection is most vigorous when the condensible component is between dilute and nondilute abundance. 
                        more » 
                        « less   
                    
                            
                            How Moisture Shapes Low‐Level Radiative Cooling in Subsidence Regimes
                        
                    
    
            Abstract Radiative cooling of the lowest atmospheric levels is of strong importance for modulating atmospheric circulations and organizing convection, but detailed observations and a robust theoretical understanding are lacking. Here we use unprecedented observational constraints from subsidence regimes in the tropical Atlantic to develop a theory for the shape and magnitude of low‐level longwave radiative cooling in clear‐sky, showing peaks larger than 5–10 K/day at the top of the boundary layer. A suite of novel scaling approximations is first developed from simplified spectral theory, in close agreement with the measurements. The radiative cooling peak height is set by the maximum lapse rate in water vapor path, and its magnitude is mainly controlled by the ratio of column relative humidity above and below the peak. We emphasize how elevated intrusions of moist air can reduce low‐level cooling, by sporadically shading the spectral range which effectively cools to space. The efficiency of this spectral shading depends both on water content and altitude of moist intrusions; its height dependence cannot be explained by the temperature difference between the emitting and absorbing layers, but by the decrease of water vapor extinction with altitude. This analytical work can help to narrow the search for low‐level cloud patterns sensitive to radiative‐convective feedbacks: the most organized patterns with largest cloud fractions occur in atmospheres below 10% relative humidity and feel the strongest low‐level cooling. This motivates further assessment of favorable conditions for radiative‐convective feedbacks and a robust quantification of corresponding shallow cloud dynamics in current and warmer climates. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1916908
- PAR ID:
- 10416181
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- AGU Advances
- Volume:
- 4
- Issue:
- 3
- ISSN:
- 2576-604X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) exhibits a large spread in the simulated climate across models, including in profiles of buoyancy and relative humidity. Here we use simple theory to understand the control of stability, relative humidity, and their responses to warming. Across the RCEMIP ensemble, temperature profiles are systematically cooler than a moist adiabat, and convective available potential energy (CAPE) increases with warming at a rate greater than that expected from the Clausius‐Clapeyron relation. There is higher CAPE (greater instability) in models that are on average moister in the lower‐troposphere. To more explicitly evaluate the drivers of the intermodel spread, we use simple theory to estimate values of entrainment and precipitation efficiency (PE) given the simulated values of CAPE and lower‐tropospheric relative humidity. We then decompose the intermodel spread in CAPE and relative humidity (and their responses to warming) into contributions from variability in entrainment, PE, the temperature of the convecting top, and the inverse water vapor scale height. Model‐to‐model variation in entrainment is a dominant source of intermodel spread in CAPE and its changes with warming, while variation in PE is the dominant source of intermodel spread in relative humidity. We also decompose the magnitude of the CAPE increase with warming and find that atmospheric warming itself contributes most strongly to the CAPE increase, but the indirect effect of increases in the water vapor scale height with warming also contribute to increasing CAPE beyond that expected from Clausius‐Clapeyron.more » « less
- 
            Abstract Congestus clouds, characterized by their vertical extent into the middle troposphere, are widespread in tropical regions and play an important role in Earth's climate system. However, fundamental questions regarding their formation and prevalence remain unanswered. Here, we endeavor to answer how congestus cloud tops form by detraining preferentially at altitudes between 5 and 6 km and why this detraining outflow is invigorated by drier mid‐tropospheric conditions. We construct a clear‐sky radiative‐convective framework of congestus cloud‐top formation that is grounded in the discovery of an important spectroscopic property of water vapor. In this mass‐ and energy‐conserving framework, convective detrainment maximizes at a height of 5 and 6 km due to a swift decline in radiative cooling in clear‐sky regions. This decline is, in turn, a consequence of water vapor spectroscopy: more specifically, a drop in the number of strong absorption lines in the water vapor rotation band. In a simple spectral model, we link this spectroscopic property to the shape of the rotation band, which can be approximated as the product of a power law and a sine wave representing the band's deviation from statistical log‐linearity. The characteristic “C”‐shaped relative humidity profile in the tropics further strengthens the outflow in drier mid‐level conditions by amplifying vertical decreases in the clear‐sky cooling rate. Essential to this process are strong RH gradients, which are most pronounced under the driest conditions and induce a vertical decrease in the optical depth lapse rate across the mid‐troposphere.more » « less
- 
            Abstract The vertical profile of clear-sky radiative cooling places important constraints on the vertical structure of convection and associated clouds. Simple theory using the cooling-to-space approximation is presented to indicate that the cooling rate in the upper troposphere should increase with surface temperature. The theory predicts how the cooling rate depends on lapse rate in an atmosphere where relative humidity remains approximately a fixed function of temperature. Radiative cooling rate is insensitive to relative humidity because of cancellation between the emission and transmission of radiation by water vapor. This theory is tested with one-dimensional radiative transfer calculations and radiative-convective equilibrium simulations. For climate simulations that produce an approximately moist adiabatic lapse rate, the radiative cooling profile becomes increasingly top-heavy with increasing surface temperature. If the temperature profile warms more slowly than a moist adiabatic profile in mid-troposphere, then the cooling rate in the upper troposphere is reduced and that in the lower troposphere is increased. This has important implications for convection, clouds and associated deep and shallow circulations.more » « less
- 
            Abstract Tropical areas with mean upward motion—and as such the zonal-mean intertropical convergence zone (ITCZ)—are projected to contract under global warming. To understand this process, a simple model based on dry static energy and moisture equations is introduced for zonally symmetric overturning driven by sea surface temperature (SST). Processes governing ascent area fraction and zonal mean precipitation are examined for insight into Atmospheric Model Intercomparison Project (AMIP) simulations. Bulk parameters governing radiative feedbacks and moist static energy transport in the simple model are estimated from the AMIP ensemble. Uniform warming in the simple model produces ascent area contraction and precipitation intensification—similar to observations and climate models. Contributing effects include stronger water vapor radiative feedbacks, weaker cloud-radiative feedbacks, stronger convection-circulation feedbacks, and greater poleward moisture export. The simple model identifies parameters consequential for the inter-AMIP-model spread; an ensemble generated by perturbing parameters governing shortwave water vapor feedbacks and gross moist stability changes under warming tracks inter-AMIP-model variations with a correlation coefficient ∼0.46. The simple model also predicts the multimodel mean changes in tropical ascent area and precipitation with reasonable accuracy. Furthermore, the simple model reproduces relationships among ascent area precipitation, ascent strength, and ascent area fraction observed in AMIP models. A substantial portion of the inter-AMIP-model spread is traced to the spread in how moist static energy and vertical velocity profiles change under warming, which in turn impact the gross moist stability in deep convective regions—highlighting the need for observational constraints on these quantities. Significance Statement A large rainband straddles Earth’s tropics. Most, but not all, climate models predict that this rainband will shrink under global warming; a few models predict an expansion of the rainband. To mitigate some of this uncertainty among climate models, we build a simpler model that only contains the essential physics of rainband narrowing. We find several interconnected processes that are important. For climate models, the most important process is the efficiency with which clouds move heat and humidity out of rainy regions. This efficiency varies among climate models and appears to be a primary reason for why climate models do not agree on the rate of rainband narrowing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
