skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1916908

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The infrared window region (780–1,250 cm−1, 12.8 to 8.0 μm) is of great importance to Earth's climate due to its high transparency and thermal energy. We present here a new investigation of the transparency of this spectral region based on observations by interferometers of downwelling surface radiance at two DOE Atmospheric Radiation Measurement program sites. We focus on the dominant source of absorption in this region, the water vapor continuum, and derive updated values of spectral absorption coefficients for both the self and foreign continua. Our results show that the self continuum is too strong in the previous version of Mlawer‐Tobin_Clough‐Kneizys‐Davies (MT_CKD) water vapor continuum model, a result that is consistent with other recent analyses, while the foreign continuum is too weak in MT_CKD. In general, the weaker self continuum derived in this study results in an overall increase in atmospheric transparency in the window, although in atmospheres with low amounts of water vapor the transparency may slightly decrease due to the increase in foreign continuum absorption. These continuum changes lead to a significant decrease in downwelling longwave flux at the surface for moist atmospheres and a modest increase in outgoing longwave radiation. The increased fraction of surface‐leaving radiation that escapes to space leads to a notable increase (∼5–10%) in climate feedback, implying that climate simulations that use the new infrared window continuum will show somewhat less warming than before. This study also points out the possibly important role that aerosol absorption may play in the longwave radiative budget. 
    more » « less
  2. Abstract The Community Earth System Model, version 2 (CESM2), has a very high climate sensitivity driven by strong positive cloud feedbacks. To evaluate the simulated clouds in the present climate and characterize their response with climate warming, a clustering approach is applied to three independent satellite cloud products and a set of coupled climate simulations. Usingk-means clustering with a Wasserstein distance cost function, a set of typical cloud configurations is derived for the satellite cloud products. Using satellite simulator output, the model clouds are classified into the observed cloud regimes in both current and future climates. The model qualitatively reproduces the observed cloud configurations in the historical simulation using the same time period as the satellite observations, but it struggles to capture the observed heterogeneity of clouds which leads to an overestimation of the frequency of a few preferred cloud regimes. This problem is especially apparent for boundary layer clouds. Those low-level cloud regimes also account for much of the climate response in the late twenty-first century in four shared socioeconomic pathway simulations. The model reduces the frequency of occurrence of these low-cloud regimes, especially in tropical regions under large-scale subsidence, in favor of regimes that have weaker cloud radiative effects. 
    more » « less
  3. Abstract We investigate the effect of uncertainty in water vapor continuum absorption at terrestrial wavenumbers on CO2forcing , longwave feedbackλ, and climate sensitivity at surface temperaturesTsbetween 270 and 330 K. We calculate this uncertainty using a line‐by‐line radiative‐transfer model and a single‐column atmospheric model, assuming a moist‐adiabatic temperature lapse‐rate and 80% relative humidity in the troposphere, an isothermal stratosphere, and clear skies. Due to the lack of a comprehensive model of continuum uncertainty, we represent continuum uncertainty in two different idealized approaches: In the first, we assume that the total continuum absorption is constrained at reference conditions; in the second, we assume that the total continuum absorption is constrained for all atmospheres in our model. In both approaches, we decrease the self continuum by 10% and adjust the foreign continuum accordingly. We find that continuum uncertainty mainly affects through its effect onλ. In the first approach, continuum uncertainty mainly affectsλthrough a decrease in the total continuum absorption withTs; in the second approach, continuum uncertainty affectsλthrough a vertical redistribution of continuum absorption. In both experiments, the effect of continuum uncertainty on is modest atTs = 288 K (≈0.02 K) but substantial atTs ≥ 300 K (up to 0.2 K), because at highTs, the effects of decreasing the self continuum and increasing the foreign continuum have the same sign. These results highlight the importance of a correct partitioning between self and foreign continuum to accurately determine the temperature dependence of Earth's climate sensitivity. 
    more » « less
  4. Abstract Broadband (spectrally‐integrated) radiation calculations are dominated by the expense of spectral integration, and many applications require fast parameterizations for computing radiative flux. Here we describe a novel approach using a linear weighted sum of monochromatic calculations at a small set of optimally‐chosen frequencies. The empirically‐optimized quadrature method is used to compute atmospheric boundary fluxes, net flux profiles throughout the atmosphere, heating rate profiles, and top‐of‐the‐atmosphere forcing by CO2, in the longwave for clear skies. We evaluate the method against two modern correlatedk‐distribution models and find that we can achieve comparable errors with 32 spectral points. We also examine the effect of minimizing different cost functions, and find that in order to accurately represent heating rates and CO2forcing, these quantities must be included in the cost function. 
    more » « less
  5. Abstract Radiative cooling of the lowest atmospheric levels is of strong importance for modulating atmospheric circulations and organizing convection, but detailed observations and a robust theoretical understanding are lacking. Here we use unprecedented observational constraints from subsidence regimes in the tropical Atlantic to develop a theory for the shape and magnitude of low‐level longwave radiative cooling in clear‐sky, showing peaks larger than 5–10 K/day at the top of the boundary layer. A suite of novel scaling approximations is first developed from simplified spectral theory, in close agreement with the measurements. The radiative cooling peak height is set by the maximum lapse rate in water vapor path, and its magnitude is mainly controlled by the ratio of column relative humidity above and below the peak. We emphasize how elevated intrusions of moist air can reduce low‐level cooling, by sporadically shading the spectral range which effectively cools to space. The efficiency of this spectral shading depends both on water content and altitude of moist intrusions; its height dependence cannot be explained by the temperature difference between the emitting and absorbing layers, but by the decrease of water vapor extinction with altitude. This analytical work can help to narrow the search for low‐level cloud patterns sensitive to radiative‐convective feedbacks: the most organized patterns with largest cloud fractions occur in atmospheres below 10% relative humidity and feel the strongest low‐level cooling. This motivates further assessment of favorable conditions for radiative‐convective feedbacks and a robust quantification of corresponding shallow cloud dynamics in current and warmer climates. 
    more » « less
  6. Radiative forcing by carbon dioxide depends on the difference between surface and stratospheric temperature scaled by the logarithm of its concentration (Wilson and Gea-Banacloche 2012; Jeevanjee et al. 2021). This relationship arises due to the cooling-to-space theory or theτ= 1 law, where all emission of infrared radiation originates from the atmospheric pressure level where the gas reaches sufficient optical thickness (in the case of CO2, in the stratosphere). Here we develop theoretical understanding of forcing by other well-mixed greenhouse gases including methane (CH4), nitrous oxide (N2O), and chlorofluorocarbons (CFCs). Radiative forcing by an optically thin absorber (e.g., CFC-12) is governed by emission throughout the troposphere and scaled by the total change in gas concentration, such that a linear increase in gas abundance yields a linear increase in forcing. We examine the factors that control the magnitude of radiative forcing, demonstrating analytically that CFC-12 is a stronger per-molecule absorber than CO2due to its larger average cross-section, rather than its band width or spectral position. Application in idealized atmospheres with simplified lapse rates illustrates how radiative forcing by optically thin gases depends almost linearly on lapse rate. Finally, gases that are both optically thin and optically thick across their absorption spectrum, such as N2O and CH4, can be understood as a combination of the two regimes, yielding a super-logarithmic relationship to concentration. Our theory is in excellent agreement with full-physics line-by-line calculations in atmospheres with and without spectral overlap by water vapor 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  7. Surface warming is projected to increase global mean rainfall primarily by increasing the radiative cooling of the atmosphere. However, the radiative mechanisms which cause cooling to increase are not well understood. Here, we show that changes in cooling are driven primarily by changes in atmospheric opacity, particularly within the water vapor window. This suggests that changes in mean rainfall are primarily controlled by the thermodynamic and spectroscopic properties of Earth’s main greenhouse gases: water vapor and carbon dioxide. Consistent with comprehensive general circulation models, our results explain why mean rainfall increases with surface warming at about 2% per kelvin, why this rate is largely unchanged over numerous doublings of atmospheric carbon dioxide, and why mean rainfall decreases in hothouse climates. 
    more » « less
    Free, publicly-accessible full text available May 9, 2026