skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effectiveness of travel behavior and infrastructure change to mitigate heat exposure
Urban heat exposure is an increasing health risk among urban dwellers. Many cities are considering accommodating active mobility, especially walking and biking, to reduce greenhouse gas emissions. However, promoting active mobility without proper planning and transportation infrastructure to combat extreme heat exposure may cause more heat-related morbidity and mortality, particularly in future with projected climate change. This study estimated the effectiveness of active trip heat exposure mitigation under built environment and travel behavior change. Simulations of the Phoenix metro region's 624,987 active trips were conducted using the activity-based travel model (ABM), mean radiant temperature (T MRT , net human radiation exposure), transportation network, and local climate zones. Two scenarios were designed to reduce traveler exposure: one that focuses on built environment change (making neighborhoods cooler) and the other on travel behavior (switching from shorter travel time but higher exposure routes to longer travel time but cooler routes) change. Travelers experienced T MRT heat exposure ranging from 29°C to 76°C (84°F to 168°F) without environmental or behavioral change. Active trip T MRT exposures were reduced by an average of 1.2–3.7°C when the built environment was changed from a hotter to cooler design. Behavioral changes cooled up to 10 times more trips than changes in built environment changes. The marginal benefit of cooling decreased as the number of cooled corridors transformed increased. When the most traveled 10 km of corridors were cooled, the marginal benefit affected over 1,000 trips/km. However, cooling all corridors results in marginal benefits as low as 1 trip/km. The results reveal that heavily traveled corridors should be prioritized with limited resources, and the best cooling results come from environment and travel behavior change together. The results show how to surgically invest in travel behavior and built environment change to most effectively protect active travelers.  more » « less
Award ID(s):
1942805
PAR ID:
10416265
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Sustainable Cities
Volume:
5
ISSN:
2624-9634
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agent-based models have been extensively used to simulate the behavior of travelers in transportation systems because they allow for realistic and versatile modeling of interactions. However, traditional agent-based models suffer from high computational costs and rely on tracking physical locations, raising privacy concerns. This paper proposes an efficient formulation for the agent-based bathtub model (AB2M) in the relative space, where each agent’s trajectory is represented by a time series of the remaining distance to its destination. The AB2M can be understood as a microscopic model that tracks individual trips’ initiation, progression, and completion and is an exact numerical solution of the bathtub model for generic (time-dependent) trip distance distributions. The model can be solved for a deterministic set of trips with a given demand pattern (defined by the start time of each trip and its distance), or it can be used to run Monte Carlo simulations to capture the average behavior and variations of stochastic demand patterns. To enhance the computational efficiency, we introduce a priority queue formulation for AB2M, eliminating the need to update trip positions at each time step and allowing us to run large-scale scenarios with millions of individual trips in seconds. We systematically explore the scaling properties of AB2M and discuss the introduction of biases and numerical errors. Finally, we analyze the upper bound of the computational complexity of the AB2M and the benefits of the priority queue formulation and downscaling on the computational cost. The systematic exploration of scaling properties of the modeling of individual agents in the relative space with the AB2M further enhances its applicability to large-scale transportation systems and opens up opportunities for studying travel time reliability, scheduling, and mode choices. 
    more » « less
  2. Rapid urbanization has posed significant burden on urban transportation infrastructures. In today's cities, both private and public transits have clear limitations to fulfill passengers' needs for quality of experience (QoE): Public transits operate along fixed routes with long wait time and total transit time; Private transits, such as taxis, private shuttles and ride-hailing services, provide point-to-point transits with high trip fare. In this paper, we propose CityLines, a transformative urban transit system, employing hybrid hub-and-spoke transit model with shared shuttles. Analogous to Airlines services, the proposed CityLines system routes urban trips among spokes through a few hubs or direct paths, with travel time as short as private transits and fare as low as public transits. CityLines allows both point-to-point connection to improve the passenger QoE, and hub-and-spoke connection to reduce the system operation cost. To evaluate the performance of CityLines, we conduct extensive data-driven experiments using one-month real-world trip demand data (from taxis, buses and subway trains) collected from Shenzhen, China. The results demonstrate that CityLines reduces 12.5%-44% average travel time, and aggregates 8.5%-32.6% more trips with ride-sharing over other implementation baselines. 
    more » « less
  3. Trip generation, a critical first step in travel demand forecasting, requires not only estimating trips from the observed sample data, but also calculating the total number of trips in the population, including both the observed trips and the trips missed from the sample (we call them missing trips in this paper). The latter, how to recover missing trips, is scarcely studied in the academic literature, and the state-of-the-art practice is through the application of sample weights to extrapolate from observed trips to the population total. In recent years, big location-based service (LBS) has become a promising alternative data source (in addition to household travel survey data) in trip generation. Because users self-select into using different mobile services that result in LBS data, selection bias exists in the LBS data, and the kinds of trips excluded or included differ systematically among data sources. This study addresses this issue and develops a behaviorally informed approach to quantify the selection biases and recover missing trips. The key idea is that because biases reflected in different data sources are likely different, the integration of multiple biased data sources will mitigate biases. This is achieved by formulating a capture probability that specifies the probability of capturing a trip in a data set as a function of various behavioral factors (e.g., socio-demographics and area-related factors) and estimating the associated parameters through maximum likelihood or Bayesian methods. This approach is evaluated through experimental studies that test the effects of data and model uncertainty on its ability of recovering missing trips. The model is also applied to two real-world case studies: one using the 2017 National Household Travel Survey data and the other using two LBS data sets. Our results demonstrate the robustness of the model in recovering missing trips, even when the analyst completely mis-specifies the underlying trip generation process and the capture probability functions (for quantifying selection biases). The developed methodology can be scalable to any number of data sets and is applicable to both big and small data sets. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods for Urban Mobility. Funding: This work was supported by the Division of Civil, Mechanical and Manufacturing Innovation [Grant 2114260], the National Institute of General Medical Sciences [Grant 1R01GM108731-01A1], and the U.S. Department of Transportation [Grant 69A3551747116]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0550 . 
    more » « less
  4. Rapid urbanization has posed significant burden on urban transportation infrastructures. In today's cities, both private and public transits have clear limitations to fulfill passengers' needs for quality of experience (QoE): Public transits operate along fixed routes with long wait time and total transit time; Private transits, such as taxis, private shuttles and ride-hailing services, provide point-to-point transits with high trip fare. In this paper, we propose CityLines, a transformative urban transit system, employing hybrid hub-and-spoke transit model with shared shuttles. Analogous to Airlines services, the proposed CityLines system routes urban trips among spokes through a few hubs or direct paths, with travel time as short as private transits and fare as low as public transits. CityLines allows both point-to-point connection to improve the passenger QoE, and hub-and-spoke connection to reduce the system operation cost. Our evaluation results show that CityLines framework can achieve both short travel time and high ride-sharing ratio. 
    more » « less
  5. Traffic congestion has become a serious issue around the globe, partly owing to single-occupancy commuter trips. Ridesharing can present a suitable alternative for serving commuter trips. However, there are several important obstacles that impede ridesharing systems from becoming a viable mode of transportation, including the lack of a guarantee for a ride back home as well as the difficulty of obtaining a critical mass of participants. This paper addresses these obstacles by introducing a traveler incentive program (TIP) to promote community-based ridesharing with a ride back home guarantee among commuters. The TIP program allocates incentives to (1) directly subsidize a select set of ridesharing rides and (2) encourage a small, carefully selected set of travelers to change their travel behavior (i.e., departure or arrival times). We formulate the underlying ride-matching problem as a budget-constrained min-cost flow problem and present a Lagrangian relaxation-based algorithm with a worst-case optimality bound to solve large-scale instances of this problem in polynomial time. We further propose a polynomial-time, budget-balanced version of the problem. Numerical experiments suggest that allocating subsidies to change travel behavior is significantly more beneficial than directly subsidizing rides. Furthermore, using a flat tax rate as low as 1% can double the system’s social welfare in the budget-balanced variant of the incentive program. 
    more » « less