Abstract Monitoring wildlife abundance across space and time is an essential task to study their population dynamics and inform effective management. Acoustic recording units are a promising technology for efficiently monitoring bird populations and communities. While current acoustic data models provide information on the presence/absence of individual species, new approaches are needed to monitor population abundance, ideally across large spatio‐temporal regions.We present an integrated modelling framework that combines high‐quality but temporally sparse bird point count survey data with acoustic recordings. Our models account for imperfect detection in both data types and false positive errors in the acoustic data. Using simulations, we compare the accuracy and precision of abundance estimates using differing amounts of acoustic vocalizations obtained from a clustering algorithm, point count data, and a subset of manually validated acoustic vocalizations. We also use our modelling framework in a case study to estimate abundance of the Eastern Wood‐Pewee (Contopus virens) in Vermont, USA.The simulation study reveals that combining acoustic and point count data via an integrated model improves accuracy and precision of abundance estimates compared with models informed by either acoustic or point count data alone. Improved estimates are obtained across a wide range of scenarios, with the largest gains occurring when detection probability for the point count data is low. Combining acoustic data with only a small number of point count surveys yields estimates of abundance without the need for validating any of the identified vocalizations from the acoustic data. Within our case study, the integrated models provided moderate support for a decline of the Eastern Wood‐Pewee in this region.Our integrated modelling approach combines dense acoustic data with few point count surveys to deliver reliable estimates of species abundance without the need for manual identification of acoustic vocalizations or a prohibitively expensive large number of repeated point count surveys. Our proposed approach offers an efficient monitoring alternative for large spatio‐temporal regions when point count data are difficult to obtain or when monitoring is focused on rare species with low detection probability.
more »
« less
Identification of a Triangular Two Equation System Without Instruments
We show that a standard linear triangular two equation system can be point identified, without the use of instruments or any other side information. We find that the only case where the model is not point identified is when a latent variable that causes endogeneity is normally distributed. In this nonidentified case, we derive the sharp identified set. We apply our results to Acemoglu and Johnson’s model of life expectancy and GDP, obtaining point identification and comparable estimates to theirs, without using their (or any other) instrument.
more »
« less
- Award ID(s):
- 1950969
- PAR ID:
- 10416283
- Date Published:
- Journal Name:
- Journal of Business & Economic Statistics
- ISSN:
- 0735-0015
- Page Range / eLocation ID:
- 1 to 12
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In a highly influential paper from fifteen years ago [10], Canetti, Goldreich, and Halevi showed a fundamental separation between the Random Oracle Model (ROM) and the standard model. They constructed a signature scheme which can be proven secure in the ROM, but is insecure when instantiated with any hash function (and thus insecure in the standard model). In 2011, Boneh et al. defined the notion of the Quantum Random Oracle Model (QROM), where queries to the random oracle may be made in quantum superposition. Because the QROM generalizes the ROM, a proof of security in the QROM is stronger than one in the ROM. This leaves open the possibility that security in the QROM could imply security in the standard model. In this work, we show that this is not the case, and that security in the QROM cannot imply standard-model security. We do this by showing that the original schemes that show a separation between the standard model and the ROM are also secure in the QROM. We consider two schemes that establish such a separation, one with length-restricted messages, and one without, and show both to be secure in the QROM. Our results give further understanding to the landscape of proofs in the ROM versus the QROM or standard model, and point towards the QROM and ROM being much closer to each other than either is to standard model security.more » « less
-
null (Ed.)Abstract We outline and interpret a recently developed theory of impedance matching or reflectionless excitation of arbitrary finite photonic structures in any dimension. The theory includes both the case of guided wave and free-space excitation. It describes the necessary and sufficient conditions for perfectly reflectionless excitation to be possible and specifies how many physical parameters must be tuned to achieve this. In the absence of geometric symmetries, such as parity and time-reversal, the product of parity and time-reversal, or rotational symmetry, the tuning of at least one structural parameter will be necessary to achieve reflectionless excitation. The theory employs a recently identified set of complex frequency solutions of the Maxwell equations as a starting point, which are defined by having zero reflection into a chosen set of input channels, and which are referred to as R-zeros. Tuning is generically necessary in order to move an R-zero to the real frequency axis, where it becomes a physical steady-state impedance-matched solution, which we refer to as a reflectionless scattering mode (RSM). In addition, except in single-channel systems, the RSM corresponds to a particular input wavefront, and any other wavefront will generally not be reflectionless. It is useful to consider the theory as representing a generalization of the concept of critical coupling of a resonator, but it holds in arbitrary dimension, for arbitrary number of channels, and even when resonances are not spectrally isolated. In a structure with parity and time-reversal symmetry (a real dielectric function) or with parity–time symmetry, generically a subset of the R-zeros has real frequencies, and reflectionless states exist at discrete frequencies without tuning. However, they do not exist within every spectral range, as they do in the special case of the Fabry–Pérot or two-mirror resonator, due to a spontaneous symmetry-breaking phenomenon when two RSMs meet. Such symmetry-breaking transitions correspond to a new kind of exceptional point, only recently identified, at which the shape of the reflection and transmission resonance lineshape is flattened. Numerical examples of RSMs are given for one-dimensional multimirror cavities, a two-dimensional multiwaveguide junction, and a multimode waveguide functioning as a perfect mode converter. Two solution methods to find R-zeros and RSMs are discussed. The first one is a straightforward generalization of the complex scaling or perfectly matched layer method and is applicable in a number of important cases; the second one involves a mode-specific boundary matching method that has only recently been demonstrated and can be applied to all geometries for which the theory is valid, including free space and multimode waveguide problems of the type solved here.more » « less
-
SUMMARY In previous publications, we presented a general framework, which we called ‘box tomography’, that allows the coupling of any two different numerical seismic wave propagation solvers, respectively outside and inside a target region, or ‘box’. The goal of such hybrid wavefield computations is to reduce the cost of computations in the context of full-waveform inversion for structure within the target region, when sources and/or receivers are located at large distances from the box. Previously, we had demonstrated this approach with sources and receivers outside the target region in a 2-D acoustic spherical earth model, and demonstrated and applied this methodology in the 3-D spherical elastic Earth in a continental scale inversion in which all stations were inside the target region. Here we extend the implementation of the approach to the case of a 3-D global elastic earth model in the case where both sources and stations are outside the box. We couple a global 3-D solver, SPECFEM3D_GLOBE, for the computation of the wavefield and Green’s functions in a reference 3-D model, with a regional 3-D solver, RegSEM, for the computation of the wavefield within the box, by means of time-reversal mirrors. We briefly review key theoretical aspects, showing in particular how only the displacement is needed to be stored at the boundary of the box. We provide details of the practical implementation, including the geometrical design of the mirrors, how we deal with different sizes of meshes in the two solvers, and how we address memory-saving through the use of B-spline compression of the recorded wavefield on the mirror. The proposed approach is numerically efficient but also versatile, since adapting it to other solvers is straightforward and does not require any changes in the solver codes themselves, as long as the displacement can be recovered at any point in time and space. We present benchmarks of the hybrid computations against direct computations of the wavefield between a source and an array of stations in a realistic geometry centred in the Yellowstone region, with and without a hypothetical plume within the ‘box’, and with a 1-D or a 3-D background model, down to a period of 20 s. The ultimate goal of this development is for applications in the context of imaging of remote target regions in the deep mantle, such as, for example, Ultra Low Velocity Zones.more » « less
-
This paper studies a dynamic pricing problem under model misspecification. To characterize model misspecification, we adopt the ε-contamination model—the most fundamental model in robust statistics and machine learning. In particular, for a selling horizon of length T, the online ε-contamination model assumes that demands are realized according to a typical unknown demand function only for [Formula: see text] periods. For the rest of [Formula: see text] periods, an outlier purchase can happen with arbitrary demand functions. The challenges brought by the presence of outlier customers are mainly due to the fact that arrivals of outliers and their exhibited demand behaviors are completely arbitrary, therefore calling for robust estimation and exploration strategies that can handle any outlier arrival and demand patterns. We first consider unconstrained dynamic pricing without any inventory constraint. In this case, we adopt the Follow-the-Regularized-Leader algorithm to hedge against outlier purchase behavior. Then, we introduce inventory constraints. When the inventory is insufficient, we study a robust bisection-search algorithm to identify the clearance price—that is, the price at which the initial inventory is expected to clear at the end of T periods. Finally, we study the general dynamic pricing case, where a retailer has no clue whether the inventory is sufficient or not. In this case, we design a meta-algorithm that combines the previous two policies. All algorithms are fully adaptive, without requiring prior knowledge of the outlier proportion parameter ε. Simulation study shows that our policy outperforms existing policies in the literature.more » « less
An official website of the United States government

