Abstract Directed self-assembly of block copolymers (BCPs) enables nanofabrication at sub-10 nm dimensions, beyond the resolution of conventional lithography. However, directing the position, orientation, and long-range lateral order of BCP domains to produce technologically-useful patterns is a challenge. Here, we present a promising approach to direct assembly using spatial boundaries between planar, low-resolution regions on a surface with different composition. Pairs of boundaries are formed at the edges of isolated stripes on a background substrate. Vertical lamellae nucleate at and are pinned by chemical contrast at each stripe/substrate boundary, align parallel to boundaries, selectively propagate from boundaries into stripe interiors (whereas horizontal lamellae form on the background), and register to wide stripes to multiply the feature density. Ordered BCP line arrays with half-pitch of 6.4 nm are demonstrated on stripes >80 nm wide. Boundary-directed epitaxy provides an attractive path towards assembling, creating, and lithographically defining materials on sub-10 nm scales.
more »
« less
A statistical approach for neural network pruning with application to internet of things
Abstract Pruning is showing huge potential for compressing and accelerating deep neural networks by eliminating redundant parameters. Along with more terminal chips integrated with AI accelerators for internet of things (IoT) devices, structured pruning is gaining popularity with the edge computing research area. Different from filter pruning and group-wise pruning, stripe-wise pruning (SWP) conducts pruning at the level of stripes in each filter. By introducing filter skeleton (FS) to each stripe, the existing SWP method sets an absolute threshold for the values in FS and removes the stripes whose corresponding values in FS could not meet the threshold. Starting with investigation into the process of stripe wise convolution, we use the statistical properties of the weights located on each stripe to learn the importance between those stripes in a filter and remove stripes with low importance. Our pruned VGG-16 achieves the existing results by a fourfold reduction in parameter with only 0.4% decrease in accuracy. Results from comprehensive experiments on IoT devices are also presented.
more »
« less
- Award ID(s):
- 2219753
- PAR ID:
- 10416329
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- EURASIP Journal on Wireless Communications and Networking
- Volume:
- 2023
- Issue:
- 1
- ISSN:
- 1687-1499
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fu, Feng (Ed.)When two streams of pedestrians cross at an angle, striped patterns spontaneously emerge as a result of local pedestrian interactions. This clear case of self-organized pattern formation remains to be elucidated. In counterflows, with a crossing angle of 180°, alternating lanes of traffic are commonly observed moving in opposite directions, whereas in crossing flows at an angle of 90°, diagonal stripes have been reported. Naka (1977) hypothesized that stripe orientation is perpendicular to the bisector of the crossing angle. However, studies of crossing flows at acute and obtuse angles remain underdeveloped. We tested the bisector hypothesis in experiments on small groups (18-19 participants each) crossing at seven angles (30° intervals), and analyzed the geometric properties of stripes. We present two novel computational methods for analyzing striped patterns in pedestrian data: (i) an edge-cutting algorithm, which detects the dynamic formation of stripes and allows us to measure local properties of individual stripes; and (ii) a pattern-matching technique, based on the Gabor function, which allows us to estimate global properties (orientation and wavelength) of the striped pattern at a time T . We find an invariant property: stripes in the two groups are parallel and perpendicular to the bisector at all crossing angles. In contrast, other properties depend on the crossing angle: stripe spacing (wavelength), stripe size (number of pedestrians per stripe), and crossing time all decrease as the crossing angle increases from 30° to 180°, whereas the number of stripes increases with crossing angle. We also observe that the width of individual stripes is dynamically squeezed as the two groups cross each other. The findings thus support the bisector hypothesis at a wide range of crossing angles, although the theoretical reasons for this invariant remain unclear. The present results provide empirical constraints on theoretical studies and computational models of crossing flows.more » « less
-
Existing pruning techniques preserve deep neural networks’ overall ability to make correct predictions but could also amplify hidden biases during the compression process. We propose a novel pruning method, Fairness-aware GRAdient Pruning mEthod (FairGRAPE), that minimizes the disproportionate impacts of pruning on different sub-groups. Our method calculates the per-group importance of each model weight and selects a subset of weights that maintain the relative between-group total importance in pruning. The proposed method then prunes network edges with small importance values and repeats the procedure by updating importance values. We demonstrate the effectiveness of our method on four different datasets, FairFace, UTKFace, CelebA, and ImageNet, for the tasks of face attribute classification where our method reduces the disparity in performance degradation by up to 90% compared to the state-of-the-art pruning algorithms. Our method is substantially more effective in a setting with a high pruning rate (99%). The code and dataset used in the experiments are available at https://github.com/Bernardo1998/FairGRAPEmore » « less
-
Deep convolutional neural network (DNN) has demonstrated phenomenal success and been widely used in many computer vision tasks. However, its enormous model size and high computing complexity prohibits its wide deployment into resource limited embedded system, such as FPGA and mGPU. As the two most widely adopted model compression techniques, weight pruning and quantization compress DNN model through introducing weight sparsity (i.e., forcing partial weights as zeros) and quantizing weights into limited bit-width values, respectively. Although there are works attempting to combine the weight pruning and quantization, we still observe disharmony between weight pruning and quantization, especially when more aggressive compression schemes (e.g., Structured pruning and low bit-width quantization) are used. In this work, taking FPGA as the test computing platform and Processing Elements (PE) as the basic parallel computing unit, we first propose a PE-wise structured pruning scheme, which introduces weight sparsification with considering of the architecture of PE. In addition, we integrate it with an optimized weight ternarization approach which quantizes weights into ternary values ({-1,0,+1}), thus converting the dominant convolution operations in DNN from multiplication-and-accumulation (MAC) to addition-only, as well as compressing the original model (from 32-bit floating point to 2-bit ternary representation) by at least 16 times. Then, we investigate and solve the coexistence issue between PE-wise Structured pruning and ternarization, through proposing a Weight Penalty Clipping (WPC) technique with self-adapting threshold. Our experiment shows that the fusion of our proposed techniques can achieve the best state-of-the-art ∼21× PE-wise structured compression rate with merely 1.74%/0.94% (top-1/top-5) accuracy degradation of ResNet-18 on ImageNet dataset.more » « less
-
null (Ed.)The invention of Transformer model structure boosts the performance of Neural Machine Translation (NMT) tasks to an unprecedented level. Many previous works have been done to make the Transformer model more execution-friendly on resource-constrained platforms. These researches can be categorized into three key fields: Model Pruning, Transfer Learning, and Efficient Transformer Variants. The family of model pruning methods are popular for their simplicity in practice and promising compression rate and have achieved great success in the field of convolution neural networks (CNNs) for many vision tasks. Nonetheless, previous Transformer pruning works did not perform a thorough model analysis and evaluation on each Transformer component on off-the-shelf mobile devices. In this work, we analyze and prune transformer models at the line-wise granularity and also implement our pruning method on real mobile platforms. We explore the properties of all Transformer components as well as their sparsity features, which are leveraged to guide Transformer model pruning. We name our whole Transformer analysis and pruning pipeline as TPrune. In TPrune, we first propose Block-wise Structured Sparsity Learning (BSSL) to analyze Transformer model property. Then, based on the characters derived from BSSL, we apply Structured Hoyer Square (SHS) to derive the final pruned models. Comparing with the state-of-the-art Transformer pruning methods, TPrune is able to achieve a higher model compression rate with less performance degradation. Experimental results show that our pruned models achieve 1.16×–1.92× speedup on mobile devices with 0%–8% BLEU score degradation compared with the original Transformer model.more » « less