A bstract Quantum states with geometric duals are known to satisfy a stricter set of entropy inequalities than those obeyed by general quantum systems. The set of allowed entropies derived using the Ryu-Takayanagi (RT) formula defines the Holographic Entropy Cone (HEC). These inequalities are no longer satisfied once general quantum corrections are included by employing the Quantum Extremal Surface (QES) prescription. Nevertheless, the structure of the QES formula allows for a controlled study of how quantum contributions from bulk entropies interplay with HEC inequalities. In this paper, we initiate an exploration of this problem by relating bulk entropy constraints to boundary entropy inequalities. In particular, we show that requiring the bulk entropies to satisfy the HEC implies that the boundary entropies also satisfy the HEC. Further, we also show that requiring the bulk entropies to obey monogamy of mutual information (MMI) implies the boundary entropies also obey MMI.
more »
« less
Holographic tensor networks from hyperbolic buildings
A bstract We introduce a unifying framework for the construction of holographic tensor networks, based on the theory of hyperbolic buildings. The underlying dualities relate a bulk space to a boundary which can be homeomorphic to a sphere, but also to more general spaces like a Menger sponge type fractal. In this general setting, we give a precise construction of a large family of bulk regions that satisfy complementary recovery. For these regions, our networks obey a Ryu-Takayanagi formula. The areas of Ryu-Takayanagi surfaces are controlled by the Hausdorff dimension of the boundary, and consistently generalize the behavior of holographic entanglement entropy in integer dimensions to the non-integer case. Our construction recovers HaPPY-like codes in all dimensions, and generalizes the geometry of Bruhat-Tits trees. It also provides examples of infinite-dimensional nets of holographic conditional expectations, and opens a path towards the study of conformal field theory and holography on fractal spaces.
more »
« less
- Award ID(s):
- 2104330
- PAR ID:
- 10416568
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 10
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract This paper expands on two recent proposals, [12, 13] and [14], for generalizing the Ryu-Takayanagi and Hubeny-Rangamani-Takayanagi formulas to de Sitter space. The proposals (called the monolayer and bilayer proposals) are similar; both replace the boundary of AdS by the boundaries of static-patches — in other words event horizons. After stating the rules for each, we apply them to a number of cases and show that they yield results expected on other grounds. The monolayer and bilayer proposals often give the same results, but in one particular situation they disagree. To definitively decide between them we need to understand more about the nature of the thermodynamic limit of holographic systems.more » « less
-
A bstract Since the work of Ryu and Takayanagi, deep connections between quantum entanglement and spacetime geometry have been revealed. The negative eigenvalues of the partial transpose of a bipartite density operator is a useful diagnostic of entanglement. In this paper, we discuss the properties of the associated entanglement negativity and its Rényi generalizations in holographic duality. We first review the definition of the Rényi negativities, which contain the familiar logarithmic negativity as a special case. We then study these quantities in the random tensor network model and rigorously derive their large bond dimension asymptotics. Finally, we study entanglement negativity in holographic theories with a gravity dual, where we find that Rényi negativities are often dominated by bulk solutions that break the replica symmetry. From these replica symmetry breaking solutions, we derive general expressions for Rényi negativities and their special limits including the logarithmic negativity. In fixed-area states, these general expressions simplify dramatically and agree precisely with our results in the random tensor network model. This provides a concrete setting for further studying the implications of replica symmetry breaking in holography.more » « less
-
Entanglement, chaos, and complexity are as important for de Sitter space as for AdS, and for black holes. There are similarities and also great differences between AdS and dS in how these concepts are manifested in the space-time geometry.In the first part of this paper the Ryu–Takayanagi prescription, the theory of fast-scrambling, and the holographic complexity correspondence are reformulated for de Sitter space. Criteria are proposed for a holographic model to describe de Sitter space. The criteria can be summarized by the requirement that scrambling and complexity growth must be ``hyperfast."In the later part of the paper I show that a certain limit of the SYK model satisfies the hyperfast criterion. This leads tothe radical conjecture that a limit of SYK is indeed a concrete, computable, holographic model of de Sitter space. Calculations are described which support the conjecture.more » « less
-
Over the past two decades, the study of self-similarity and fractality in discrete structures, particularly complex networks, has gained momentum. This surge of interest is fueled by the theoretical developments within the theory of complex networks and the practical demands of real-world applications. Nonetheless, translating the principles of fractal geometry from the domain of general topology, dealing with continuous or infinite objects, to finite structures in a mathematically rigorous way poses a formidable challenge. In this paper, we overview such a theory that allows to identify and analyze fractal networks through the innate methodologies of graph theory and combinatorics. It establishes the direct graph-theoretical analogs of topological (Lebesgue) and fractal (Hausdorff) dimensions in a way that naturally links them to combinatorial parameters that have been studied within the realm of graph theory for decades. This allows to demonstrate that the self-similarity in networks is defined by the patterns of intersection among densely connected network communities. Moreover, the theory bridges discrete and continuous definitions by demonstrating how the combinatorial characterization of Lebesgue dimension via graph representation by its subsets (subgraphs/communities) extends to general topological spaces. Using this framework, we rigorously define fractal networks and connect their properties with established combinatorial concepts, such as graph colorings and descriptive complexity. The theoretical framework surveyed here sets a foundation for applications to real-life networks and future studies of fractal characteristics of complex networks using combinatorial methods and algorithms.more » « less
An official website of the United States government

