skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two stages of bandwidth scaling drives efficient neural coding of natural sounds
Theories of efficient coding propose that the auditory system is optimized for the statistical structure of natural sounds, yet the transformations underlying optimal acoustic representations are not well understood. Using a database of natural sounds including human speech and a physiologically-inspired auditory model, we explore the consequences of peripheral (cochlear) and mid-level (auditory midbrain) filter tuning transformations on the representation of natural sound spectra and modulation statistics. Whereas Fourier-based sound decompositions have constant time-frequency resolution at all frequencies, cochlear and auditory midbrain filters bandwidths increase proportional to the filter center frequency. This form of bandwidth scaling produces a systematic decrease in spectral resolution and increase in temporal resolution with increasing frequency. Here we demonstrate that cochlear bandwidth scaling produces a frequency-dependent gain that counteracts the tendency of natural sound power to decrease with frequency, resulting in a whitened output representation. Similarly, bandwidth scaling in mid-level auditory filters further enhances the representation of natural sounds by producing a whitened modulation power spectrum (MPS) with higher modulation entropy than both the cochlear outputs and the conventional Fourier MPS. These findings suggest that the tuning characteristics of the peripheral and mid-level auditory system together produce a whitened output representation in three dimensions (frequency, temporal and spectral modulation) that reduces redundancies and allows for a more efficient use of neural resources. This hierarchical multi-stage tuning strategy is thus likely optimized to extract available information and may underlies perceptual sensitivity to natural sounds.  more » « less
Award ID(s):
2043903
PAR ID:
10416627
Author(s) / Creator(s):
; ;
Editor(s):
Wei, Xue-Xin
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
19
Issue:
2
ISSN:
1553-7358
Page Range / eLocation ID:
e1010862
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Acoustic communication is a fundamental component of mate and competitor recognition in a variety of taxa and requires animals to detect and differentiate among acoustic stimuli (Bradbury and Vehrencamp 2011). The matched filter hypothesis predicts a correspondence between peripheral auditory tuning of receivers and properties of species-specific acoustic signals, but few studies have assessed this relationship in rodents. We recorded vocalizations and measured auditory brainstem responses (ABRs) in northern grasshopper mice (Onychomys leucogaster), a species that produces long-distance calls to advertise their presence to rivals and potential mates. ABR data indicate the highest sensitivity (28.33 9.07 dB SPL re: 20 Pa) at 10 kHz, roughly corresponding to the fundamental frequency (11.6 ± 0.63 kHz) of longdistance calls produced by conspecifics. However, the frequency range of peripheral auditory sensitivity was broad (8-24 kHz), indicating the potential to detect both the harmonics of conspecific calls and vocalizations of sympatric heterospecifics. Our findings provide support for the matched filter hypothesis extended to include other ecologically relevant stimuli. Our study contributes important baseline information about the sensory ecology of a unique rodent to the study of sound perception. 
    more » « less
  2. Little is known about how neural representations of natural sounds differ across species. For example, speech and music play a unique role in human hearing, yet it is unclear how auditory representations of speech and music differ between humans and other animals. Using functional ultrasound imaging, we measured responses in ferrets to a set of natural and spectrotemporally matched synthetic sounds previously tested in humans. Ferrets showed similar lower-level frequency and modulation tuning to that observed in humans. But while humans showed substantially larger responses to natural vs. synthetic speech and music in non-primary regions, ferret responses to natural and synthetic sounds were closely matched throughout primary and non-primary auditory cortex, even when tested with ferret vocalizations. This finding reveals that auditory representations in humans and ferrets diverge sharply at late stages of cortical processing, potentially driven by higher-order processing demands in speech and music. 
    more » « less
  3. Spectrotemporal modulations (STM) are essential features of speech signals that make them intelligible. While their encoding has been widely investigated in neurophysiology, we still lack a full understanding of how STMs are processed at the behavioral level and how cochlear hearing loss impacts this processing. Here, we introduce a novel methodological framework based on psychophysical reverse correlation deployed in the modulation space to characterize the mechanisms underlying STM detection in noise. We derive perceptual filters for young normal-hearing and older hearing-impaired individuals performing a detection task of an elementary target STM (a given product of temporal and spectral modulations) embedded in other masking STMs. Analyzed with computational tools, our data show that both groups rely on a comparable linear (band-pass)–nonlinear processing cascade, which can be well accounted for by a temporal modulation filter bank model combined with cross-correlation against the target representation. Our results also suggest that the modulation mistuning observed for the hearing-impaired group results primarily from broader cochlear filters. Yet, we find idiosyncratic behaviors that cannot be captured by cochlear tuning alone, highlighting the need to consider variability originating from additional mechanisms. Overall, this integrated experimental-computational approach offers a principled way to assess suprathreshold processing distortions in each individual and could thus be used to further investigate interindividual differences in speech intelligibility. 
    more » « less
  4. Little is known about the neural mechanisms that mediate differential action–selection responses to communication and echolocation calls in bats. For example, in the big brown bat, frequency modulated (FM) food-claiming communication calls closely resemble FM echolocation calls, which guide social and orienting behaviors, respectively. Using advanced signal processing methods, we identified fine differences in temporal structure of these natural sounds that appear key to auditory discrimination and behavioral decisions. We recorded extracellular potentials from single neurons in the midbrain inferior colliculus (IC) of passively listening animals, and compared responses to playbacks of acoustic signals used by bats for social communication and echolocation. We combined information obtained from spike number and spike triggered averages (STA) to reveal a robust classification of neuron selectivity for communication or echolocation calls. These data highlight the importance of temporal acoustic structure for differentiating echolocation and food-claiming social calls and point to general mechanisms of natural sound processing across species. 
    more » « less
  5. This paper presents a novel automatic tuning mechanism that eliminates hand-tuning and is suitable for electronically-tunable microwave filters. The proposed method is based on a deep Q-learning approach using physics-based filter characteristic parameters like resonant frequency, bandwidth, insertion loss, and return loss. The whole tuning process is done automatically and does not require any pre-tuning or human expertise. Furthermore, unlike single-frequency post-production tuning techniques, the presented methodology is applicable to continuously-tunable filters covering a wide frequency range. This method is experimentally demonstrated on a 2-3.5 GHz evanescent-mode electronically-tunable bandpass filter. To the best of our knowledge, this is the first demonstration of such an automatic tuning mechanism where the user can specify any frequency of interest and the filter tunes automatically to that frequency within the entire operating range of the filter. 
    more » « less