skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Porosity evolution of mafic crystal mush during reactive flow
Abstract The emergence of the “mush paradigm” has raised several questions for conventional models of magma storage and extraction: how are melts extracted to form eruptible liquid-rich domains? What mechanism controls melt transport in mush-rich systems? Recently, reactive flow has been proposed as a major contributing factor in the formation of high porosity, melt-rich regions. Yet, owing to the absence of accurate geochemical simulations, the influence of reactive flow on the porosity of natural mush systems remains under-constrained. Here, we use a thermodynamically constrained model of melt-mush reaction to simulate the chemical, mineralogical, and physical consequences of reactive flow in a multi-component mush system. Our results demonstrate that reactive flow within troctolitic to gabbroic mushes can drive large changes in mush porosity. For example, primitive magma recharge causes an increase in the system porosity and could trigger melt channelization or mush destabilization, aiding rapid melt transfer through low-porosity mush reservoirs.  more » « less
Award ID(s):
1947616
PAR ID:
10416667
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY The 2011–2012 eruption at Cordón Caulle in Chile produced crystal-poor rhyolitic magma with crystal-rich mafic enclaves whose interstitial glass is of identical composition to the host rhyolite. Eruptible rhyolites are thought to be genetically associated with crystal-rich magma mushes, and the enclaves within the Cordón Caulle rhyolite support the existence of a magma mush from which the erupted magma was derived. Moreover, towards the end of the 2011–2012 eruption, subsidence gave way to inflation that has on average been continuous through at least 2020. We hypothesize that magma segregation from a crystal mush could be the source of the observed inflation. Conceptually, magma withdrawal from a crystal-poor rhyolite reservoir caused its depressurization, which could have led to upward flow of interstitial melt within an underlying crystal mush, causing a new batch of magma to segregate and partially recharge the crystal-poor rhyolite body. Because the compressibility of the crystalline matrix of the mush is expected to be lower than that of the interstitial melt, which likely contains some fraction of volatile bubbles, this redistribution of melt would result in a net increase in volume of the system and in the observed inflation. We use numerical modelling of subsurface magma flow and storage to show under which conditions such a scenario is supported by geodetic and petrologic observations. 
    more » « less
  2. Volcano inflation, for durations of months to years immediately following an eruption, has been observed at a number of volcanoes, including the 2011/12 eruption of Cordón Caulle, Chile. Such reinflation is often explained by replenishment of the magma reservoir from a deeper source. Whether and why that is the case remains uncertain in most instances, but the implications for renewed eruptive potential may be profound. Here, we posit redistribution of melt within a zoned magma reservoir consisting of a crystal rich mush overlain by an eruptible layer of crystal poor rhyolite as an alternate mechanism for reinflation. Such a zoned magma body is consistent with conceptual models for how crystal poor rhyolites form and with the presence of mafic enclaves within the Cordón Caulle rhyolite. The enclaves can be interpreted as pieces of mush entrained into the overlying rhyolite during its withdrawal from the reservoir. We test the hypothesis that melt from the inter-crystalline pores of the mush can redistribute by porous flow into the overlying crystal poor rhyolite, causing inflation after an eruption. We simulate the flow of melt within the zoned reservoir during and after eruption with a numerical model. As crystal poor rhyolite is erupted, magma pressure within the rhyolite layer above the mush decreases. Consequently, interstitial melt flows upward within the mush, toward the reduced pressure at the interface of mush and crystal poor rhyolite. The mush is treated as a poroelastic material, with interstitial melt flow governed by Darcy's law. Thus, the change in pressure caused by withdrawal from the overlying rhyolite diffuses downward into the mush as the interstitial melt flows upward. The change in pore pressure results in an elastic deformation of the mush matrix. Because pore pressure diffusivity is small, melt redistribution can persist for years after eruptive activity ends, leading to slow inflation compared to fast eruptive deflation. We predict a partial recovery of volume lost from the eruption. Reinflation occurs because the expansion of decompressing melt flowing from the mush into the crystal poor rhyolite exceeds compression of the poroelastic mush. For cases where the interstitial melt is moderately compressible due to exsolved volatiles, our model reproduces the deformation observed at Cordón Caulle. 
    more » « less
  3. Abstract Magmatic systems are composed of melt accumulations and crystal mush that evolve with melt transport, contributing to igneous processes, volcano dynamics, and eruption triggering. Geophysical studies of active volcanoes have revealed details of shallow-level melt reservoirs, but little is known about fine-scale melt distribution at deeper levels dominated by crystal mush. Here, we present new seismic reflection images from Axial Seamount, northeastern Pacific Ocean, revealing a 3–5-km-wide conduit of vertically stacked melt lenses, with near-regular spacing of 300–450 m extending into the inferred mush zone of the mid-to-lower crust. This column of lenses underlies the shallowest melt-rich portion of the upper-crustal magma reservoir, where three dike intrusion and eruption events initiated. The pipe-like zone is similar in geometry and depth extent to the volcano inflation source modeled from geodetic records, and we infer that melt ascent by porous flow focused within the melt lens conduit led to the inflation-triggered eruptions. The multiple near-horizontal lenses are interpreted as melt-rich layers formed via mush compaction, an interpretation supported by one-dimensional numerical models of porous flow in a viscoelastic matrix. 
    more » « less
  4. Abstract We conducted experiments to study melt migration in crystal‐rich mushes, with application to magma ascent within transcrustal magma reservoirs. Mushes with crystal volume fractions of 0.59–0.83 were prepared by hot‐pressing crushed borosilicate glass mixed with different proportions of quartz sand particles. Each experimental sample comprises stacked disks of mush and soda‐lime glass, a proxy for crystal‐free magma. Samples were subjected to confining pressures of 100–300 MPa and a temperature of 900°C (above the glass transition temperatures of the borosilicate and soda‐lime glasses) for up to 6 h. The bottom and circumference of the mush and soda lime disks experience the confining pressure, but the top of the mush disks is at room pressure, resulting in a pore‐pressure gradient across the mush layer. Following cooling and decompression, we determined the area fraction and morphology of soda‐lime melt that migrated into the mush layer during experiments. Melt fraction is more strongly correlated to crystal fraction than pore‐pressure gradient, increasing with crystal fraction before sharply decreasing as crystal fractions exceed 0.8. This change at 0.8 coincides with the transition from crystals in the mush moving during soda‐lime migration to crystals forming a continuous rigid network. In our experiments, melt migration occurred by viscous fingering, but near the mobile‐to‐rigid transition, melt migration is enhanced by additional capillary action. Our results indicate that magma migration may peak when rigid mushes “unlock” to become mobile. This transition may mark an increase in magma migration, a potential precursor to volcanic unrest and eruption. 
    more » « less
  5. Abstract Two distinct types of rare crystal-rich mafic enclaves have been identified in the rhyolite lava flow from the 2011–12 Cordón Caulle eruption (Southern Andean Volcanic Zone, SVZ). The majority of mafic enclaves are coarsely crystalline with interlocking olivine-clinopyroxene-plagioclase textures and irregular shaped vesicles filling the crystal framework. These enclaves are interpreted as pieces of crystal-rich magma mush underlying a crystal-poor rhyolitic magma body that has fed recent silicic eruptions at Cordón Caulle. A second type of porphyritic enclaves, with restricted mineral chemistry and spherical vesicles, represents small-volume injections into the rhyolite magma. Both types of enclaves are basaltic end-members (up to 9.3 wt% MgO and 50–53 wt% SiO 2 ) in comparison to enclaves erupted globally. The Cordón Caulle enclaves also have one of the largest compositional gaps on record between the basaltic enclaves and the rhyolite host at 17 wt% SiO 2 . Interstitial melt in the coarsely-crystalline enclaves is compositionally identical to their rhyolitic host, suggesting that the crystal-poor rhyolite magma was derived directly from the underlying basaltic magma mush through efficient melt extraction. We suggest the 2011–12 rhyolitic eruption was generated from a primitive basaltic crystal-rich mush that short-circuited the typical full range of magmatic differentiation in a single step. 
    more » « less