This study focuses on the fabrication, characterization and anticancer properties of biocompatible and biodegradable composite nanofibers consisting of poly(vinyl alcohol) (PVA), oxymatrine (OM), and citric acid (CA) using a facile and high‐yield centrifugal spinning process known as Forcespinning. The effects of varying concentrations of OM and CA on fiber diameter and molecular cross‐linking are investigated. The morphological and thermo‐physical properties, as well as water absorption of the developed nanofiber‐based mats are characterized using microscopical analysis, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. In vitro anticancer studies are conducted with HCT116 colorectal cancer cells. Results show a high yield of long fibers embedded with beads. Fiber average diameters range between 462 and 528 nm depending on OM concentration. The thermal analysis results show that the fibers are stable at room temperature. The anticancer study reveals that PVA nanofiber membrane with high concentrations of OM can suppress the proliferation of HCT116 colorectal cancer cells. The study provides a comprehensive investigation of OM embedded into nanosized PVA fibers and the prospective application of these membranes as a drug delivery system.
- Award ID(s):
- 2122102
- PAR ID:
- 10416684
- Date Published:
- Journal Name:
- Materials
- Volume:
- 16
- Issue:
- 8
- ISSN:
- 1996-1944
- Page Range / eLocation ID:
- 3106
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The substitution of traditional copper power transmission cables with lightweight copper–carbon nanotube (Cu–CNT) composite fibers is critical for reducing the weight, fuel consumption, and CO2 emissions of automobiles and aircrafts. Such a replacement will also allow for lowering the transmission power loss in copper cables resulting in a decrease in coal and gas consumption, and ultimately diminishing the carbon footprint. In this work, we created a lightweight Cu–CNT composite fiber through a multistep scalable process, including spinning, densification, functionalization, and double-layer copper deposition. The characterization and testing of the fabricated fiber included surface morphology, electrical conductivity, mechanical strength, crystallinity, and ampacity (current density). The electrical conductivity of the resultant composite fiber was measured to be 0.5 × 106 S/m with an ampacity of 0.18 × 105 A/cm2. The copper-coated CNT fibers were 16 times lighter and 2.7 times stronger than copper wire, as they revealed a gravimetric density of 0.4 g/cm3 and a mechanical strength of 0.68 GPa, suggesting a great potential in future applications as lightweight power transmission cables.more » « less
-
The current paper presents the development and characterization of polyvinylidene fluoride (PVDF)-Zn2GeO4 (ZGO) fine fiber mats. ZGO nanorods (NRs) were synthesized using a hydrothermal method and incorporated in a PVDF solution to produce fine fiber mats. The fiber mats were prepared by varying the concentration of ZGO NRs (1.25–10 wt %) using the Forcespinning® method. The developed mats showed long, continuous, and homogeneous fibers, with average fiber diameters varying from 0.7 to 1 µm, depending on the ZGO concentration. X-ray diffraction spectra depicted a positive correlation among concentration of ZGO NRs and strengthening of the beta phase within the PVDF fibers. The composite system containing 1.25 wt % of ZGO displayed the highest piezoelectric response of 172 V. This fine fiber composite system has promising potential applications for energy harvesting and the powering of wearable and portable electronics.more » « less
-
Abstract We report a new approach to monitor drug release from nanocarriers via a paclitaxel–methylene blue conjugate (PTX‐MB) with redox activity. This construct is in a photoacoustically silent reduced state inside poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles (PTX‐MB@PLGA NPs). During release, PTX‐MB is spontaneously oxidized to produce a concentration‐dependent photoacoustic signal. An in vitro drug‐release study showed an initial burst release (25 %) between 0–24 h and a sustained release between 24–120 h with a cumulative release of 40.6 % and a 670‐fold increase in photoacoustic signal. An in vivo murine drug release showed a photoacoustic signal enhancement of up to 649 % after 10 hours. PTX‐MB@PLGA NPs showed an IC50of 78 μg mL−1and 44.7±4.8 % decrease of tumor burden in an orthotopic model of colon cancer via luciferase‐positive CT26 cells.
-
Abstract We report a new approach to monitor drug release from nanocarriers via a paclitaxel–methylene blue conjugate (PTX‐MB) with redox activity. This construct is in a photoacoustically silent reduced state inside poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles (PTX‐MB@PLGA NPs). During release, PTX‐MB is spontaneously oxidized to produce a concentration‐dependent photoacoustic signal. An in vitro drug‐release study showed an initial burst release (25 %) between 0–24 h and a sustained release between 24–120 h with a cumulative release of 40.6 % and a 670‐fold increase in photoacoustic signal. An in vivo murine drug release showed a photoacoustic signal enhancement of up to 649 % after 10 hours. PTX‐MB@PLGA NPs showed an IC50of 78 μg mL−1and 44.7±4.8 % decrease of tumor burden in an orthotopic model of colon cancer via luciferase‐positive CT26 cells.