Effectively translating the promising properties of boron nitride nanotubes (BNNTs) into macroscopic assemblies has vast potential for applications, such as thermal management materials and protective fabrics against hazardous environment. We spun fibers from aqueous dispersions of BNNTs in polyvinyl alcohol (PVA) solutions by a wet spinning method. Our results demonstrate that BNNTs/PVA fibers exhibit enhanced mechanical properties, which are affected by the nanotube and PVA concentrations, and the coagulation solvent utilized. Compared to the neat PVA fibers, we obtained roughly 4.3-, 12.7-, and 1.5-fold increases in the tensile strength, Young's modulus, and toughness, respectively, for the highest performing BNNTs/PVA fibers produced from dispersions containing as low as 0.1 mass% of nanotube concentration. Among the coagulation solvents tested, we found that solvents with higher polarity such as methanol and ethanol generally produced fibers with improved mechanical properties, where the fiber toughness shows a strong correlation with solvent polarity. These findings provide insights into assembling BNNTs-based fibers with improved mechanical properties for developing unique applications.
more »
« less
Oxymatrine Loaded Cross‐Linked PVA Nanofibrous Scaffold: Design and Characterization and Anticancer Properties
Abstract This study focuses on the fabrication, characterization and anticancer properties of biocompatible and biodegradable composite nanofibers consisting of poly(vinyl alcohol) (PVA), oxymatrine (OM), and citric acid (CA) using a facile and high‐yield centrifugal spinning process known as Forcespinning. The effects of varying concentrations of OM and CA on fiber diameter and molecular cross‐linking are investigated. The morphological and thermo‐physical properties, as well as water absorption of the developed nanofiber‐based mats are characterized using microscopical analysis, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. In vitro anticancer studies are conducted with HCT116 colorectal cancer cells. Results show a high yield of long fibers embedded with beads. Fiber average diameters range between 462 and 528 nm depending on OM concentration. The thermal analysis results show that the fibers are stable at room temperature. The anticancer study reveals that PVA nanofiber membrane with high concentrations of OM can suppress the proliferation of HCT116 colorectal cancer cells. The study provides a comprehensive investigation of OM embedded into nanosized PVA fibers and the prospective application of these membranes as a drug delivery system.
more »
« less
- PAR ID:
- 10424050
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Macromolecular Bioscience
- Volume:
- 23
- Issue:
- 10
- ISSN:
- 1616-5187
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
153 Background: Conventional monolayer cell cultures and xenograft models, while useful and economical in early drug discovery, cannot predict clinical efficacy. Further, preclinical screening assays that rely on differential metabolic activity between separate control and treated wells are incapable of capturing phenotypic response and could overstate efficacy for cells with high rates of proliferation. Consequently, over 95% of anticancer agents that show efficacy in preclinical studies, fail in clinical trials. Recently, patient-derived organoid (PDO) models have been utilized in developing platforms to predict clinical efficacy of preclinical formulations. If successful, such predictive ex vivo technologies could revolutionize cancer treatment by reducing cost and time-to-market for new, more effective therapeutics. Objective: Characterize a novel bioprinted organoid tumor (BOT) high-throughput screening ex vivo platform for drug response prediction (DRP) with known proteosome and survivn inhibitors in colorectal cancer. Methods: Bioink for 3D printing BOTs was prepared with HT-29 cells, an established NCI-60 human colorectal adenocarcinoma cell line with known sensitivity to proteosome and survivin inhibitors. Bioink was deposited layer-by-layer on multiple substrates, in various geometrical configurations, and cured in stages to allow cells and matrix to self-assemble with limited degrees of freedom. BOTs were screened 24h and 48h after printing with proteosome inhibitor Bortezomib and survivin inhibitor YM-155. BOTs were evaluated 48h and 72h after treatment using immunofluorescence live/dead assay. Morphological phenotypic changes resulting from treatment were also recorded. Results: Proteasome and survivin inhibitors have been reported to inhibit proliferation and induce cell death in colorectal cancer cells. A dose dependent response was observed for both agents in our novel BOT HTS thereby validating the platform. In addition, characteristic self-assembly of HT-29 cells was observed to be disrupted at effective doses and at certain concentrations below the effective dose. Traditional ATP assays are incapable of recording such phenotypic modulation. Further, a higher proliferation profile was observed in untreated BOTs suggesting that use of independent control wells in traditional assays could overstate efficacy of treatment. Conclusions: Functional high-throughput ex vivo DRP technologies have the potential to transform cancer treatment – from bench to bedside – along the drug discovery to market roadmap for much needed novel anticancer agents.more » « less
-
Fusobacterium nucleatumis implicated in accelerating colorectal cancer (CRC) and is found within metastatic CRC cells in patient biopsies. Here, we found that bacterial invasion of CRC cells and cocultured immune cells induced a differential cytokine secretion that may contribute to CRC metastasis. We used a modified galactose kinase markerless gene deletion approach and found thatF. nucleatuminvaded cultured HCT116 CRC cells through the bacterial surface adhesin Fap2. In turn, Fap2-dependent invasion induced the secretion of the proinflammatory cytokines IL-8 and CXCL1, which are associated with CRC progression and promoted HCT116 cell migration. Conditioned medium fromF. nucleatum–infected HCT116 cells caused naïve cells to migrate, which was blocked by depleting CXCL1 and IL-8 from the conditioned medium. Cytokine secretion from HCT116 cells and cellular migration were attenuated by inhibitingF. nucleatumhost-cell binding and entry using galactose sugars,l-arginine, neutralizing membrane protein antibodies, orfap2deletion.F. nucleatumalso induces the mobilization of immune cells in the tumor microenvironment. However, in neutrophils and macrophages, the bacterial-induced secretion of cytokines was Fap2 independent. Thus, our findings show thatF. nucleatumboth directly and indirectly modulates immune and cancer cell signaling and migration. Because increased IL-8 and CXCL1 production in tumors is associated with increased metastatic potential and cell seeding, poor prognosis, and enhanced recruitment of tumor-associated macrophages and fibroblasts, we propose that inhibition of host-cell binding and invasion, potentially through vaccination or novel galactoside compounds, could be an effective strategy for reducingF. nucleatum–associated CRC metastasis.more » « less
-
This study is focused on the selective delivery and release of the plant-based anticancer compound eugenol (EUG) in colorectal cancer cells (CRC). EUG is an apoptotic and anti-growth compound in diverse malignant tumors, including CRC. However, EUG’s rapid metabolization, excretion, and side effects on normal cells at higher dosages are major limitations of its therapeutic potential. To address this problem, we developed a “smart” enzyme-responsive nanoparticle (eNP) loaded with EUG that exposes tumors to a high level of the drug while keeping its concentration low among healthy cells. We demonstrated that EUG induces apoptosis in CRC cells irrespective of their grades in a dose- and time-dependent manner. EUG significantly decreases cancer cell migration, invasion, and the population of colon cancer stem cells, which are key players in tumor metastasis and drug resistance. The “smart” eNPs–EUG show a high affinity to cancer cells with rapid internalization with no affinity toward normal colon epithelial cells. NPs–EUG enhanced the therapeutic efficacy of EUG measured by a cell viability assay and showed no toxicity effect on normal cells. The development of eNPs–EUG is a promising strategy for innovative anti-metastatic therapeutics.more » « less
-
Hierarchically microstructured tri-axial poly(vinyl alcohol)/graphene nanoplatelet (PVA/GNP) composite fibers were fabricated using a dry-jet wet spinning technique. The composites with distinct PVA/GNPs/PVA phases led to highly oriented and evenly distributed graphene nanoplatelets (GNPs) as a result of molecular chain-assisted interfacial exfoliation. With a concentration of 3.3 wt% continuously aligned GNPs, the composite achieved a ∼73.5% increase in Young's modulus (∼38 GPa), as compared to the pure PVA fiber, and an electrical conductivity of ∼0.38 S m −1 , one of the best mechanical/electrical properties reported for polymer/GNP nanocomposite fibers. This study has broader impacts on textile engineering, wearable robotics, smart sensors, and optoelectronic devices.more » « less
An official website of the United States government
