skip to main content


Title: Distributed Multiple Hypothesis Tracker for Mobile Sensor Networks
This paper proposes a distributed estimation and control algorithm to allow a team of robots to search for and track an unknown number of targets. The number of targets in the area of interest varies over time as targets enter or leave, and there are many sources of sensing uncertainty, including false positive detections, false negative detections, and measurement noise. The robots use a novel distributed Multiple Hypothesis Tracker (MHT) to estimate both the number of targets and the states of each target. A key contribution is a new data association method that reallocates target tracks across the team. The distributed MHT is compared against another distributed multi-target tracker to test its utility for multi-robot, multi-target tracking.  more » « less
Award ID(s):
2143312
NSF-PAR ID:
10416739
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Symposium on Distributed and Autonomous Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Presented at the Workshop on Heterogeneous Multi-Robot Task Allocation and Coordination. The authors recently developed a distributed algorithm to enable a team of homogeneous robots to search for and track an unknown and time-varying number of dynamic targets. This algorithm combined a distributed version of the PHD filter (for multi-target tracking) with Lloyd’s algorithm to drive the motion of the robots. In this paper we extend this previous work to allow a heterogeneous team of groundand aerial robots to perform the search and tracking tasks in a coordinated manner. Both types of robots are equipped with sensors that have a finite field of view and which may receive both false positive and false negative detections. Theaerial robots may vary the size of their sensor field of view (FoV) by changing elevation. This increase in the FoV coincides with a decrease in the accuracy and reliability of the sensor. The ground robots maintain the target tracking information while the aerial robots provide additional sensor coverage. We develop two new distributed algorithms to provide filter updates and to make control decisions in this heterogeneous team. Both algorithms only require robots to communicate with nearby robots and use minimal bandwidth.We demonstrate the efficacy of our approach through a series of simulated experiments which show that the heterogeneous teams are able to achieve more accurate tracking in less time than our previous work. 
    more » « less
  2. This paper compares different distributed control approaches that enable a team of robots search for and track an unknown number of targets. The robots are equipped with sensors which have limited field of view (FoV) and are required to explore the environment. The team uses a distributed formulation of the Probability Hypothesis Density (PHD) filter to estimate the number and the position of the targets. The resulting target estimate is used to select the future search locations for each robot. This paper compares Lloyd’s algorithm, a traditional method for distributed search, with two typical stochastic optimization methods, Particle Swarm Optimization (PSO) and Simulated Annealing (SA). PSO and SA are traditionally used to find a single global maximum, therefore this paper describes novel formulations of PSO and SA to solve the problem of multi-target tracking. These new methods more effectively trade off between exploration and exploitation. Simulations demonstrate that the use of these stochastic optimization techniques improves coverage of the search space and reduces the error in the target estimates compared to the baseline approach. 
    more » « less
  3. In order for a mobile robot to be able to effectively operate in complex, dynamic environments it must be capable of understanding both where and what the objects around them are. In this paper we introduce the semantic probability hypothesis density (SPHD) filter, which allows robots to simultaneously track multiple classes of targets despite measurement uncertainty, including false positive detections, false negative detections, measurement noise, and target misclassification. The SPHD filter is capable of incorporating a different motion model for each type of target and of functioning in situations where the number of targets is unknown and time-varying. We demonstrate the efficacy of the SPHD filter via simulations with multiple target types containing both static and dynamic targets. We show that the SPHD filter performs better than a collection of PHD filters running in parallel, one for each target class. 
    more » « less
  4. Accurately detecting, localizing, and tracking an unknown and time-varying number of dynamic targets using a team of mobile robots is a challenging problem that requires robots to reason about the uncertainties in their collected measurements. The problem is made more challenging when robots are uncertain about their own states, as this makes it difficult to both collectively localize targets and avoid collisions with one another. In this paper, we introduce the convex uncertain Voronoi (CUV) diagram, a generalization of the standard Voronoi diagram that accounts for the uncertain pose of each individual robot. We then use the CUV diagram to develop distributed multi-target tracking and coverage control algorithms that enable teams of mobile robots to account for bounded uncertainty in the location of each robot. Our algorithms are capable of safely driving mobile robots towards areas of high information distribution while maintaining coverage of the whole area of interest. We demonstrate the efficacy of these algorithms via a series of simulated and hardware tests, and compare the results to our previous work which assumes perfect localization. 
    more » « less
  5. We study two multi-robot assignment problems for multi-target tracking. We consider distributed approaches in order to deal with limited sensing and communication ranges. We seek to simultaneously assign trajectories and targets to the robots. Our focus is on \emph{local} algorithms that achieve performance close to the optimal algorithms with limited communication. We show how to use a local algorithm that guarantees a bounded approximate solution within $\mathcal{O}(h\log{1/\epsilon})$ communication rounds. We compare with a greedy approach that achieves a $2$--approximation in as many rounds as the number of robots. Simulation results show that the local algorithm is an effective solution to the assignment problem. 
    more » « less