skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of Optical Single-Event Transients in Integrated Silicon Photonics Mach-Zehnder Modulators for Space-based Optical Communications
Integrated SiPh MZMs are exposed to pulsed-laser-induced TPA, and the sensitivity to single-event transients is measured. A numerical model to predict the SET effects on SiPh MZM is developed, as well as a simulation path to validate the model.  more » « less
Award ID(s):
2052808
PAR ID:
10416783
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE Nuclear & Space Radiation Effects Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The apparent brightness of satellites is calculated as a function of satellite position as seen by a ground-based observer in darkness. Both direct illumination of the satellite by the Sun as well as indirect illumination due to reflection from the Earth are included. The reflecting properties of the satellite components and of the Earth must first be estimated (the Bidirectional Reflectance Distribution Function, or BRDF). The reflecting properties of the satellite components can be found directly using lab measurements or accurately inferred from multiple observations of a satellite at various solar angles. Integrating over all scattering surfaces leads to the angular pattern of flux from the satellite. Finally, the apparent brightness of the satellite as seen by an observer at a given location is calculated as a function of satellite position. We develop an improved model for reflection of light from Earth’s surface using aircraft data. We find that indirectly reflected light from Earth’s surface contributes significant increases in apparent satellite brightness. This effect is particularly strong during civil twilight. We validate our approach by comparing our calculations to multiple observations of selected Starlink satellites and show significant improvement on previous satellite brightness models. Similar methodology for predicting satellite brightness has already informed mitigation strategies for next-generation Starlink satellites. Measurements of satellite brightness over a variety of solar angles widens the effectiveness of our approach to virtually all satellites. We demonstrate that an empirical model in which reflecting functions of the chassis and the solar panels are fit to observed satellite data performs very well. This work finds application in satellite design and operations, and in planning observatory data acquisition and analysis. 
    more » « less
  2. Polymer optical fibers (POFs) are playing an important role in industrial applications nowadays due to their ease of handling and resilience to bending and environmental effects. A POF can tolerate a bending radius of less than 20 mm, it can work in environments with temperatures ranging from −55 °C to +105 °C, and its lifetime is around 20 years. In this paper, we propose a novel, rigorous, and efficient computational model to estimate the most important parameters that determine the characteristics of light propagation through a step-index polymer optical fiber (SI-POF). The model uses attenuation, diffusion, and mode group delay as functions of the propagation angle to characterize the optical power transmission in the SI-POF. Taking into consideration the mode group delay allows us to generalize the computational model to be applicable to POFs with different index profiles. In particular, we use experimental measurements of spatial distributions and frequency responses to derive accurate parameters for our SI-POF simulation model. The experimental data were measured at different fiber lengths according to the cut-back method. This method consists of taking several measurements such as frequency responses, angular intensity distributions, and optical power measurements over a long length of fiber (>100 m), then cutting back the fiber while maintaining the same launching conditions and repeating the measurements on the shorter lengths of fiber. The model derivation uses an objective function to minimize the differences between the experimental measurements and the simulated results. The use of the matrix exponential method (MEM) to implement the SI-POF model results in a computationally efficient model that is suitable for POF-based system-level studies. The efficiency gain is due to the independence of the calculation time with respect to the fiber length, in contrast to the classic analytical solutions of the time-dependent power flow equation. The robustness of the proposed model is validated by calculating the goodness-of-fit of the model predictions relative to experimental data. 
    more » « less
  3. TolTEC is a new camera being built for the 50-meter Large Millimeter-wave Telescope (LMT) in Puebla, Mexico to survey distant galaxies and star-forming regions in the Milky Way. The optical design simultaneously couples the field of view onto focal planes at 150, 220, and 280 GHz. The optical design and detector properties, as well as a data-driven model of the atmospheric emission of the LMT site, inform the sensitivity model of the integrated instrument. This model is used to optimize the instrument design, and to calculate the mapping speed as an early forecast of the science reach of the instrument. 
    more » « less
  4. The rapidly increasing size of deep-learning models has renewed interest in alternatives to digital-electronic computers as a means to dramatically reduce the energy cost of running state-of-the-art neural networks. Optical matrix-vector multipliers are best suited to performing computations with very large operands, which suggests that large Transformer models could be a good target for them. In this paper, we investigate---through a combination of simulations and experiments on prototype optical hardware---the feasibility and potential energy benefits of running Transformer models on future optical accelerators that perform matrix-vector multiplication. We use simulations, with noise models validated by small-scale optical experiments, to show that optical accelerators for matrix-vector multiplication should be able to accurately run a typical Transformer architecture model for language processing. We demonstrate that optical accelerators can achieve the same (or better) perplexity as digital-electronic processors at 8-bit precision, provided that the optical hardware uses sufficiently many photons per inference, which translates directly to a requirement on optical energy per inference. We studied numerically how the requirement on optical energy per inference changes as a function of the Transformer width $$d$$ and found that the optical energy per multiply--accumulate (MAC) scales approximately as $$\frac{1}{d}$$, giving an asymptotic advantage over digital systems. We also analyze the total system energy costs for optical accelerators running Transformers, including both optical and electronic costs, as a function of model size. We predict that well-engineered, large-scale optical hardware should be able to achieve a $$100 \times$$ energy-efficiency advantage over current digital-electronic processors in running some of the largest current Transformer models, and if both the models and the optical hardware are scaled to the quadrillion-parameter regime, optical accelerators could have a $$>8,000\times$$ energy-efficiency advantage. Under plausible assumptions about future improvements to electronics and Transformer quantization techniques (5× cheaper memory access, double the digital--analog conversion efficiency, and 4-bit precision), we estimate that the energy advantage for optical processors versus electronic processors operating at 300~fJ/MAC could grow to $$>100,000\times$$. 
    more » « less
  5. An experimental and computational optical pump-probe model is constructed, which utilizes two ultrafast pump pulses within the repetition period of a mode-locked laser to generate electron spin polarization. This report focuses on the effects of resonant spin amplification induced by an infinite train of the two-pump pulses. The first pump pulse is used to generate ordinary resonant spin amplification spectra, while the second pump pulse is used to manipulate the generated spectra. This model gives control of the accumulation of spin polarized electrons along a magnetic field by selecting the temporal separation of the two-pump pulses. The computational model accurately predicts and agrees with the experimental results, which shows manipulation of resonant spin peaks that are no longer entirely dependent on the external magnetic field. This two-pump model and the associated manipulations of resonant spin peaks can be used as a platform to construct and conceptualize resonant spin amplification-based optospintronic devices and applications. 
    more » « less