Abstract The Mississippi River is a vital economic corridor used for generating hydroelectric power, transporting agricultural products, and municipal and industrial water use. Communities, industries, and infrastructure along the Mississippi River face an uncertain future as it grows more susceptible to climate extremes. A key challenge is determining whether Mississippi river discharge will increase or decrease during the 21st century. Because the 20th century record is limited in time, paleoclimate data and model simulations provide enhanced understanding of the basin's hydroclimate response to external forcing. Here, we investigate how anthropogenic forcing in the 20th century shifts the statistics of river discharge compared to a Last Millennium (LM) baseline using simulations from the Community Earth System Model Last Millennium Ensemble. We present evidence that the 20th century exhibits wetter conditions (i.e., increased river discharge) over the basin compared to the pre‐industrial, and that land use/land cover changes have a significant control on the hydroclimatic response. Conversely, while precipitation is projected to increase in the 21st century, the basin is generally drier (i.e., decreased river discharge) compared to the 20th century. Overall, we find that changes in greenhouse gases contribute to a lower risk of extreme discharge and flooding in the basin during the 20th century, while land use changes contribute to increased risk of flooding. The additional climate information afforded by the LM simulations offers an improved understanding of what drove extreme flooding events in the past, which can help inform the development of future regional flood mitigation strategies.
more »
« less
Mississippi River low-flows: context, causes, and future projections
Abstract The Mississippi River represents a major commercial waterway, and periods of anomalously low river levels disrupt riverine transport. These low-flow events occur periodically, with a recent event in the fall of 2022 slowing barge traffic and generating sharp increases in riverine transportation costs. Here we combine instrumental river gage observations from the lower Mississippi River with output from the Community Earth System Model v2 (CESM2) Large Ensemble (LENS2) to evaluate historical trends and future projections of Mississippi River low streamflow extremes, place the 2022 low-flow event in a broader temporal context, and assess the hydroclimatic mechanisms that mediate the occurrence of low-flows. We show that the severity and duration of low-flow events gradually decreased between 1950–1980 coincident with the establishment of artificial reservoirs. In the context of the last ~70 years, the 2022 low-flow event was less severe in terms of stage or discharge minima than other low-flow events of the mid- and late-20th century. Model simulations from the LENS2 dataset show that, under a moderate-high emissions scenario (SSP3-7.0), the severity and duration of low-flow events is projected to decrease through to the end of the 21st century. Finally, we use the large sample size afforded by the LENS2 dataset to show that low-flow events on the Mississippi River are associated with cold tropical Pacific forcing (i.e., La Niña conditions), providing support for the hypothesis that the El Niño-Southern Oscillation (ENSO) plays a critical role in mediating Mississippi River discharge extremes. We anticipate that our findings describing the trends in and hydroclimatic mechanisms of Mississippi River low-flow occurrence will aid water resource managers to reduce the negative impacts of low water levels on riverine transport.
more »
« less
- PAR ID:
- 10416819
- Date Published:
- Journal Name:
- Environmental Research: Climate
- ISSN:
- 2752-5295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kaplan, J (Ed.)The Mississippi River Basin (MRB), the fourth-largest river basin in the world, is an important corridor for hy- droelectric power generation, agricultural and industrial production, riverine transportation, and ecosystem goods and services. Historically, flooding of the Mississippi River has resulted in significant economic losses. In a future with an intensified global hydrological cycle, the altered discharge of the river may jeopardize commu- nities and infrastructure situated in the floodplain. This study utilizes output from the Community Earth System Model version 2 (CESM2) large ensemble simulations spanning 1930 to 2100 to quantify changes in future MRB discharge under a high greenhouse gas emissions scenario (SSP3–7.0). The simulations show that increasing precipitation trends exceed and dominate increased evapotranspiration (ET), driving an overall increase in total discharge in the Ohio and Lower Mississippi River basins. On a seasonal scale, reduced spring snowmelt is projected in the Ohio and Missouri River basins, leading to reduced spring runoff in those regions. However, decreased snowmelt and spring runoff is overshadowed by a larger increase in projected precipitation minus ET over the entire basin and leads to an increase in mean river discharge. This increase in discharge is linked to a relatively small increase in the magnitude of extreme floods (2 % and 3 % for 100-year and 1000-year floods, respectively) by the late 21st century relative to the late 20th century. Our analyses imply that under SSP3–7.0 forcing, the Mississippi River and Tributaries (MR&T) project design flood would not be exceeded at the 100-year return period. Our results harbor implications for water resources management including increased vulnerability of the Mississippi River given projected changes in climate.more » « less
-
Abstract Recent severe droughts, extreme floods, and increasing differences between seasonal high and low flows on the Amazon River may represent a twenty-first-century increase in the amplitude of the hydrologic cycle over the Amazon Basin. These precipitation and streamflow changes may have arisen from natural ocean–atmospheric variability, deforestation within the drainage basin of the Amazon River, or anthropogenic climate change. Tree-ring reconstructions of wet-season precipitation extremes, substantiated with historical accounts of climate and river levels on the Amazon River and in northeast Brazil found in the Brazilian Digital Library, indicate that the recent river-level extremes on the Amazon may have been equaled or possibly exceeded during the preinstrumental nineteenth century. The “Forgotten Drought” of 1865 was the lowest wet-season rainfall total reconstructed with tree-rings in the eastern Amazon from 1790 to 2016 and appears to have been one of the lowest stream levels observed on the Amazon River during the historical era according to first-hand descriptions by Louis Agassiz, his Brazilian colleague João Martins da Silva Coutinho, and others. Heavy rains and flooding are described during most of the tree-ring-reconstructed wet extremes, including the complete inundation of “First Street” in Santarem, Brazil, in 1859 and the overtopping of the Bittencourt Bridge in Manaus, Brazil, in 1892. These extremes in the tree-ring estimates and historical observations indicate that recent high and low flow anomalies on the Amazon River may not have exceeded the natural variability of precipitation and streamflow during the nineteenth century. Significance StatementProxy tree-ring and historical evidence for precipitation extremes during the preinstrumental nineteenth century indicate that recent floods and droughts on the Amazon River may have not yet exceeded the range of natural hydroclimatic variability.more » « less
-
Abstract Winters in snow-covered regions have warmed, likely shifting the timing and magnitude of nutrient export, leading to unquantified changes in water quality. Intermittent, seasonal, and permanent snow covers more than half of the global land surface. Warming has reduced the cold conditions that limit winter runoff and nutrient transport, while cold season snowmelt, the amount of winter precipitation falling as rain, and rain-on-snow have increased. We used existing geospatial datasets (rain-on-snow frequency overlain on nitrogen and phosphorous inventories) to identify areas of the contiguous United States (US) where water quality could be threatened by this change. Next, to illustrate the potential export impacts of these events, we examined flow and turbidity data from a large regional rain-on-snow event in the United States’ largest river basin, the Mississippi River Basin. We show that rain-on-snow, a major flood-generating mechanism for large areas of the globe (Berghuijs et al 2019 Water Resour. Res. 55 4582–93; Berghuijs et al 2016 Geophys. Res. Lett. 43 4382–90), affects 53% of the contiguous US and puts 50% of US nitrogen and phosphorus pools (43% of the contiguous US) at risk of export to groundwater and surface water. Further, the 2019 rain-on-snow event in the Mississippi River Basin demonstrates that these events could have large, cascading impacts on winter nutrient transport. We suggest that the assumption of low wintertime discharge and nutrient transport in historically snow-covered regions no longer holds. Critically, however, we lack sufficient data to accurately measure and predict these episodic and potentially large wintertime nutrient export events at regional to continental scales.more » « less
-
Abstract The Mississippi River basin drains nearly one-half of the contiguous United States, and its rivers serve as economic corridors that facilitate trade and transportation. Flooding remains a perennial hazard on the major tributaries of the Mississippi River basin, and reducing the economic and humanitarian consequences of these events depends on improving their seasonal predictability. Here, we use climate reanalysis and river gauge data to document the evolution of floods on the Missouri and Ohio Rivers—the two largest tributaries of the Mississippi River—and how they are influenced by major modes of climate variability centered in the Pacific and Atlantic Oceans. We show that the largest floods on these tributaries are preceded by the advection and convergence of moisture from the Gulf of Mexico following distinct atmospheric mechanisms, where Missouri River floods are associated with heavy spring and summer precipitation events delivered by the Great Plains low-level jet, whereas Ohio River floods are associated with frontal precipitation events in winter when the North Atlantic subtropical high is anomalously strong. Further, we demonstrate that the El Niño–Southern Oscillation can serve as a precursor for floods on these rivers by mediating antecedent soil moisture, with Missouri River floods often preceded by a warm eastern tropical Pacific (El Niño) and Ohio River floods often preceded by a cool eastern tropical Pacific (La Niña) in the months leading up peak discharge. We also use recent floods in 2019 and 2021 to demonstrate how linking flood hazard to sea surface temperature anomalies holds potential to improve seasonal predictability of hydrologic extremes on these rivers.more » « less
An official website of the United States government

