skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An interface nucleation rate limited sintering kinetic model applied to in situ sintering Al2O3-SmAlO3 composites
Award ID(s):
2207292
PAR ID:
10416856
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of the European Ceramic Society
Volume:
43
Issue:
8
ISSN:
0955-2219
Page Range / eLocation ID:
3465 to 3474
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The sintering behavior of nanoparticles (NPs), which determines the quality of additively nanomanufactured products, differs from conventional understanding established for microparticles. As NPs have a high surface-to-volume ratio, they are subjected to a higher influence from surface tension and a lower melting point than microparticles, resulting in variations in both crystallographic defect-mediated and surface diffusion mechanisms. Meanwhile, the interplay between these controlling mechanisms in NPs has not been well understood, primarily because sintering occurs on the nanosecond timescale, making it an exceptionally transient process. In this work, sintering of both equal and unequal sized Ag and Cu NP doublets with and without misorientation (both tilt and twist) is modeled through molecular dynamics (MD) simulations. The formation and evolution of crystallographic defects, such as vacancies, dislocations, stacking faults, twin boundaries, and grain boundaries, during sintering are investigated. The influence of these defects on plastic deformation and diffusion mechanisms, such as volume diffusion and grain boundary (GB) diffusion, is discussed to elucidate the responsible sintering mechanisms. The surface diffusion mechanism is visualized by using detailed atomic trajectories generated during the sintering process. Finally, the overall effectiveness of all diffusion sintering mechanisms is quantified. This study provides first insights into the complexity and dynamics of NP sintering mechanisms which can aid in the development of accurate predictive models. 
    more » « less