There is an ongoing debate on the different transmission modes of SARS-CoV-2 and their relative contributions to the pandemic. In this paper, we employ a simple mathematical model, which incorporates both the human-to-human and environment-to-human transmission routes, to study the transmission dynamics of COVID-19. We focus our attention on the role of airborne transmission in the spread of the disease in a university campus setting. We conduct both mathematical analysis and numerical simulation, and incorporate published experimental data for the viral concentration in the air to fit model parameters. Meanwhile, we compare the outcome to that of the standard SIR model, utilizing a perturbation analysis in the presence of multiple time scales. Our data fitting and numerical simulation results show that the risk of airborne transmission for SARS-CoV-2 strongly depends on how long the virus can remain viable in the air. If the time for this viability is short, the airborne transmission route would be inconsequential in shaping the overall transmission risk and the total infection size. On the other hand, if the infectious virus can persist in aerosols beyond a few hours, then airborne transmission could play a much more significant role in the spread of COVID-19.
- PAR ID:
- 10416963
- Date Published:
- Journal Name:
- Mathematical Biosciences and Engineering
- Volume:
- 20
- Issue:
- 1
- ISSN:
- 1551-0018
- Page Range / eLocation ID:
- 587 to 612
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Air exchange between people has emerged in the COVID-19 pandemic as the important vector for transmission of the SARS-CoV-2 virus. We study the airflow and exchange between two unmasked individuals conversing face-to-face at short range, which can potentially transfer a high dose of a pathogen, because the dilution is small when compared to long-range airborne transmission. We conduct flow visualization experiments and direct numerical simulations of colliding respiratory jets mimicking the initial phase of a conversation. The evolution and dynamics of the jets are affected by the vertical offset between the mouths of the speakers. At low offsets the head-on collision of jets results in a `blocking effect', temporarily shielding the susceptible speaker from the pathogen carrying jet, although, the lateral spread of the jets is enhanced. Sufficiently large offsets prevent the interaction of the jets. At intermediate offsets (8-10 cm for 1 m separation), jet entrainment and the inhaled breath assist the transport of the pathogen-loaded saliva droplets towards the susceptible speaker's mouth. Air exchange is expected, in spite of the blocking effect arising from the interaction of the respiratory jets from the two speakers.more » « less
-
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in varied clinical outcomes, with virus-induced chronic inflammation and tissue injury being associated with enhanced disease pathogenesis. To determine the role of tissue damage on immune populations recruitment and function, a mathematical model of innate immunity following SARS-CoV-2 infection has been proposed. The model was fitted to published longitudinal immune marker data from patients with mild and severe COVID-19 disease and key parameters were estimated for each clinical outcome. Analytical, bifurcation, and numerical investigations were conducted to determine the effect of parameters and initial conditions on long-term dynamics. The results were used to suggest changes needed to achieve immune resolution.more » « less
-
As of March 2021, the SARS-CoV-2 virus has been responsible for over 115 million cases of COVID-19 worldwide, resulting in over 2.5 million deaths. As the virus spread exponentially, so did its media coverage, resulting in a proliferation of conflicting information on social media platforms—a so-called “infodemic.” In this viewpoint, we survey past literature investigating the role of automated accounts, or “bots,” in spreading such misinformation, drawing connections to the COVID-19 pandemic. We also review strategies used by bots to spread (mis)information and examine the potential origins of bots. We conclude by conducting and presenting a secondary analysis of data sets of known bots in which we find that up to 66% of bots are discussing COVID-19. The proliferation of COVID-19 (mis)information by bots, coupled with human susceptibility to believing and sharing misinformation, may well impact the course of the pandemic.more » « less
-
The COVID-19 pandemic has revealed critical knowledge gaps in our understanding of and a need to update the traditional view of transmission pathways for respiratory viruses. The long-standing definitions of droplet and airborne transmission do not account for the mechanisms by which virus-laden respiratory droplets and aerosols travel through the air and lead to infection. In this Review, we discuss current evidence regarding the transmission of respiratory viruses by aerosols—how they are generated, transported, and deposited, as well as the factors affecting the relative contributions of droplet-spray deposition versus aerosol inhalation as modes of transmission. Improved understanding of aerosol transmission brought about by studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires a reevaluation of the major transmission pathways for other respiratory viruses, which will allow better-informed controls to reduce airborne transmission.more » « less
-
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to impact the United States. While age and comorbid health conditions remain primary concerns in the community-based transmission of the virus, empirical evidence continues to suggest that substantial variability exists in the geographic and geodemographic distribution of COVID-19 infection rates. The purpose of this paper is to provide an alternative, spatiotemporal perspective on the pandemic using the state of Wisconsin as a case study. Specifically, in this paper, we explore the geographic nuances of COVID-19 and its spread in Wisconsin using a suite of spatial statistical approaches. We link detected hot spots of COVID-19 to local geodemographic profiles and the presence of high-risk facilities, including federal and state correctional facilities. The results suggest that the virus disproportionately impacts several communities and geodemographic groups and that proximity to risky facilities correlates to increased community infection rates.more » « less