Abstract The geometry and motility of the stomach play a critical role in the digestion of ingested liquid meals. Sleeve gastrectomy, a common type of bariatric surgery used to reduce the size of the stomach, significantly alters the stomach's anatomy and motility, which impacts gastric emptying and digestion. In this study, we use an imaging data-based computational model, StomachSim, to investigate the consequences of sleeve gastrectomy. The pre-operative stomach anatomy was derived from imaging data, and the postsleeve gastrectomy shapes were generated for different resection volumes. We investigate the effect of sleeve sizes and motility patterns on gastric mixing and emptying. Simulations were conducted using an immersed-boundary flow solver, modeling a liquid meal to analyze changes in gastric mixing and emptying rates. The results reveal that different degrees of volume reduction and impaired gastric motility have complex effects on stomach's mixing and emptying functions, which are important factors in gastric health of the patient. Specifically, the total gastric liquid emptying rates increased by 21% with a 30% volume reduction and by 51% with reductions exceeding 50%, due to altered intragastric pressure. Additionally, impaired motility functions resulted in slower mixing, leading to delayed food emptying. These findings provide insights into the biomechanical effects of sleeve gastrectomy on gastric digestion and emptying functions, highlighting the potential of computational models to inform surgical planning and postoperative management. 
                        more » 
                        « less   
                    
                            
                            Effect of stomach motility on food hydrolysis and gastric emptying: Insight from computational models
                        
                    
    
            The peristaltic motion of stomach walls combines with the secretion of digestive enzymes to initiate the process that breaks down food. In this study, the mixing, breakdown, and emptying of a liquid meal containing protein is simulated in a model of a human stomach. In this model, pepsin, the gastric enzyme responsible for protein hydrolysis, is secreted from the proximal region of the stomach walls and allowed to react with the contents of the stomach. The velocities of the retropulsive jet induced by the peristaltic motion, the emptying rate, and the extent of hydrolysis are quantified for a control case as well as for three other cases with reduced motility of the stomach, which may result from conditions such as diabetes mellitus. This study quantifies the effect of stomach motility on the rate of food breakdown and its emptying into the duodenum and we correlate these observations with the mixing in the stomach induced by the wall motion. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2019405
- PAR ID:
- 10417275
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 34
- Issue:
- 11
- ISSN:
- 1070-6631
- Page Range / eLocation ID:
- 111909
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The oral route is the most common choice for drug administration because of several advantages, such as convenience, low cost, and high patient compliance, and the demand and investment in research and development for oral drugs continue to grow. The rate of dissolution and gastric emptying of the dissolved active pharmaceutical ingredient (API) into the duodenum is modulated by gastric motility, physical properties of the pill, and the contents of the stomach, but current in vitro procedures for assessing dissolution of oral drugs are limited in their ability to recapitulate this process. This is particularly relevant for disease conditions, such as gastroparesis, that alter the anatomy and/or physiology of the stomach. In silico models of gastric biomechanics offer the potential for overcoming these limitations of existing methods. In the current study, we employ a biomimetic in silico simulator based on the realistic anatomy and morphology of the stomach (referred to as “StomachSim”) to investigate and quantify the effect of body posture and stomach motility on drug bioavailability. The simulations show that changes in posture can potentially have a significant (up to 83%) effect on the emptying rate of the API into the duodenum. Similarly, a reduction in antral contractility associated with gastroparesis can also be found to significantly reduce the dissolution of the pill as well as emptying of the API into the duodenum. The simulations show that for an equivalent motility index, the reduction in gastric emptying due to neuropathic gastroparesis is larger by a factor of about five compared to myopathic gastroparesis.more » « less
- 
            A computational model of drug dissolution in the human stomach is developed to investigate the interaction between gastric flow and orally administrated drug in the form of a solid tablet. The stomach model is derived from the anatomical imaging data and the motion and dissolution of the drug in the stomach are modeled via fluid-structure interaction combined with mass transport simulations. The effects of gastric motility and the associated fluid dynamics on the dissolution characteristics are investigated. Two different pill densities are considered to study the effects of the gastric flow as well as the gravitational force on the motion of the pill. The average mass transfer coefficient and the spatial distributions of the dissolved drug concentration are analyzed in detail. The results show that the retropulsive jet and recirculating flow in the antrum generated by the antral contraction wave play an important role in the motion of the pill as well as the transport and mixing of the dissolved drug concentration. It is also found that the gastric flow can increase the dissolution mass flux, especially when there is substantial relative motion between the gastric flow and the pill.more » « less
- 
            Pyloric interventions are surgical procedures employed to increase the gastric emptying rate in gastroparesis patients. In this study, we use anin silicomodel to investigate the consequences of pyloric intervention on gastric flow and emptying for two phenotypes of gastroparesis: antral hypomotility and decreased gastric tone. The transpyloric pressure gradient predicted by thein silicomodel, based on viscous fluid flow equations, is compared againstin vivomeasurements. Both phenotypes exhibit a similar pre-procedural emptying rate reduction, but after pyloric surgery, antral hypomotility case with preserved gastric tone shows significant improvements in emptying rates, up to 131%, accompanied by bile reflux from the duodenum into the stomach. Conversely, severely reduced gastric tone cases exhibited a post-procedural reduction in the net emptying rate due to the relatively larger bile reflux. In cases with a combination of antral hypomotility and reduced gastric tone, post-procedural improvements were observed only when both conditions were mild. Our findings highlight the pivotal role of the relative increase in pyloric orifice diameter in determining post-operative emptying rates. The study suggests a possible explanation for the selective response of patients toward these procedures and underscores the potential ofin silicomodelling to generate valuable insights to inform gastric surgery.more » « less
- 
            Round spheres, straight rods, and twisting corkscrews, bacteria come in many different shapes. The shape of bacteria is dictated by their cell wall, the strong outer barrier of the cell. As bacteria grow and multiply, they must add to their cell wall while keeping the same basic shape. The cells walls are made from long chain-like molecules via processes that are guided by protein scaffolds within the cell. Many common antibiotics, including penicillin, stop bacterial infections by interrupting the growth of cell walls. Helicobacter pylori is a common bacterium that lives in the gut and, after many years, can cause stomach ulcers and stomach cancer. H. pylori are shaped in a twisting helix, much like a corkscrew. This shape helps H. pylori to take hold and colonize the stomach. It remains unclear how H. pylori creates and maintains its helical shape. The helix is much more curved than other bacteria, and H. pylori does not have the same helpful proteins that other curved bacteria do. If H. pylori grows asymmetrically, adding more material to the cell wall on its long outer side to create a twisting helix, what controls the process? To find out, Taylor et al. grew H. pylori cells and watched how the cell walls took shape. First, a fluorescent dye was attached to the building blocks of the cell wall or to underlying proteins that were thought to help direct its growth. The cells were then imaged in 3D, and images from hundreds of cells were reconstructed to analyze the growth patterns of the bacteria’s cell wall. A protein called CcmA was found most often on the long side of the twisting H. pylori. When the CcmA protein was isolated in a dish, it spontaneously formed sheets and helical bundles, confirming its role as a structural scaffold for the cell wall. When CcmA was absent from the cell of H. pylori, Taylor et al. observed that the pattern of cell growth changed substantially. This work identifies a key component directing the growth of the cell wall of H. pylori and therefore, a new target for antibiotics. Its helical shape is essential for H. pylori to infect the gut, so blocking the action of the CcmA protein may interrupt cell wall growth and prevent stomach infections.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    