skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Results of 2021 Energy Education Stakeholder Survey
This paper presents the results of a recent energy education stakeholder survey that was conducted to examine energy industry trends and educational programming needs for the next decade. The survey was sent to over 700 faculty ranging from middle school to university level along with 150 industry representatives. The survey generated a response rate just over 10% for both the educator and industry groups. The top three technologies identified as areas for growth in the next decade were solar photovoltaics, energy storage, and electric vehicles. The biggest obstacle faced by faculty were a lack of tools, materials, and supplies necessary to provide hands-on learning with energy technology. Educators expressed a strong preference for face-to-face instruction that included access to tools and equipment, and also indicated a need for electronic open educational resources that were compliant with website accessibility requirements. The results of the survey are presented along with analysis, conclusions, and recommendations for engineering educational programs that address energy technology.  more » « less
Award ID(s):
2000714
PAR ID:
10417306
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2022 ASEE Annual Conference Proceedings
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the past few years, education at all levels has been greatly disrupted by the COVID pandemic. For many schools, face-to-face interactions were reduced or restricted to only those activities that have been determined to be essential for student instruction. The pandemic has also had a great impact on teacher professional development programming, which traditionally has been delivered largely in face-to-face settings. This paper examines the implementation of a series of energy technology teacher professional development workshops that were delivered virtually using online meeting apps. The results of the workshops are presented including participant measures of learning gains, and feedback describing how faculty participants used the information gained to modify their curriculum and instruction. The discussion includes observations and recommended practices to promote the effective incorporation of tools and equipment for remotely delivered workshops. 
    more » « less
  2. ABSTRACT The Connecticut (CT) State Colleges and Universities’ College of Technology (COT) and its Regional Center for Next Generation Manufacturing (RCNGM), a National Science Foundation (NSF) Center of Excellence, educate manufacturing technicians with necessary skills as needed by the manufacturing industry. The COT-RCNGM continuously broadens its partnerships with other community colleges, high schools and industry in New England and at the national and international levels to provide support and expertise to both students and educators in advanced manufacturing programs. The COT was founded in 1995 through state legislation to create and implement seamless pathways in engineering and technology. This system-wide collaboration of all twelve CT public community colleges, including seven state-of-the-art Advanced Manufacturing Technology Centers (AMTC) at CT’s community colleges; eight public and private universities; technical high and comprehensive high schools; and representatives from industry, including the CT Business & Industry Association (CBIA) which represents 10,000 companies. The pathways have multiple points of entry and exit for job placement and stackable credentials for degree completion, including national certifications that have increased enrollments and created program stability. The COT is led by the Site Coordinators Council that meets monthly and consists of faculty and deans from all COT educational partners and representatives from industry and government. The Council identifies and reviews new programs, concentrations, and certificates based on industry needs and creates seamless articulated pathways. Final approval is often completed within three months for immediate implementation, allowing a timely response to workforce needs. The COT-RCNGM partners with CBIA to conduct a biannual survey of manufacturing workforce needs in CT. Educators use the survey to identify curricular needs and support funding proposals for educational programs. Asnuntuck Community College, the original AMTC, was able to use industry data from the survey to help create new programs. The RCNGM partners with other NSF grants and entities such as the National Network for Manufacturing Innovation (NNMI). The COT-RCNGM produced DVDs profiling students who have completed COT programs and work in CT manufacturing companies. The Manufacture Your Future 2.0 and the You Belong: Women in Manufacturing DVDs are distributed nationally to increase knowledge of career opportunities in manufacturing. Finally, the COT-RCNGM organizes the Greater Hartford Mini Maker Faire that brings together community members of all ages and backgrounds to share projects that promote interest in STEM fields. Participation in the Maker Movement led to involvement in a national network of Maker Faire organizers including a meeting at the White House where one organizer from each state was invited to attend and discuss the national impact of Makers. 
    more » « less
  3. This paper describes an evidence based-practice paper to a formative response to the engineering faculty and students’ needs at Anonymous University. Within two weeks, the pandemic forced the vast majority of the 1.5 million faculty and 20 million students nationwide to transition all courses from face-to-face to entirely online. Never in the history of higher education has there been a concerted effort to adapt so quickly and radically, nor have we had the technology to facilitate such a rapid and massive change. At Anonymous University, over 700 engineering educators were racing to transition their courses. Many of those faculty had never experienced online course preparation, much less taught one synchronously or asynchronously. Faculty development centers and technology specialists across the university made a great effort to aid educators in this transition. These educators had questions about the best practices for moving online, how their students were affected, and the best ways to engage their students. However, these faculty’s detailed questions were answerable only by faculty peers’ experience, students’ feedback, and advice from experts in relevant engineering education research-based practices. This paper describes rapid, continuous, and formative feedback provided by the Engineering Education Faculty Group (EEFG) to provide an immediate response for peer faculty guidance during the pandemic, creating a community of practice. The faculty membership spans multiple colleges in the university, including engineering, education, and liberal arts. The EEFG transitioned immediately to weekly meetings focused on the rapidly changing needs of their colleagues. Two surveys were generated rapidly by Hammond et al. to characterize student and faculty concerns and needs in March of 2020 and were distributed through various means and media. Survey 1 and 2 had 3381 and 1506 respondents respectively with most being students, with 113 faculty respondents in survey 1, the focus of this piece of work. The first survey was disseminated as aggregated data to the College of Engineering faculty with suggested modifications to course structures based on these findings. The EEFG continued to meet and collaborate during the remainder of the Spring 2020 semester and has continued through to this day. This group has acted as a hub for teaching innovation in remote online pedagogy and techniques, while also operating as a support structure for members of the group, aiding those members with training in teaching tools, discussion difficult current events, and various challenges they are facing in their professional teaching lives. While the aggregated data gathered from the surveys developed by Hammond et al. was useful beyond measure in the early weeks of the pandemic, little attention at the time was given to the responses of faculty to that survey. The focus of this work has been to characterize faculty perceptions at the beginning of the pandemic and compare those responses between engineering and non-engineering faculty respondents, while also comparing reported perceptions of pre- and post-transition to remote online teaching. Interviews were conducted between 4 members of the EEFG with the goal of characterizing some of the experiences they have had while being members of the group during the time of the pandemic utilizing Grounded theory qualitative analysis. 
    more » « less
  4. The CREATE Supervisory Controls and Data Acquisition (SCADA) project is an industry driven initiative brought about by three colleges, working with an industry utility partner. The project began in July 2019 with the goal of integrating 21st century SCADA technology into existing energy education programs. The project delivered both in-person and online faculty professional development for 28 faculty representing 17 U.S. states. Products produced and distributed through the project network include a SCADA job task analysis, curriculum modules, control board trainers and lab activities, computer-based labs, and a web based open-source SCADA platform. The SCADA open-source platform allows colleges to connect their renewable energy generating systems and provide analytical training to their students using their own data, along with data from other regions and simulation sets. This resource will foster student engagement and ownership of learning through generation, visualization, and analysis of long term and large data sets. This study demonstrates the value of collaboration between multiple academic institutions, and how educational programs can benefit from collaboration with industry partners. 
    more » « less
  5. The highly mathematical nature of introductory level vibrations and control theory courses results in students struggling to understand the concepts. Hands-on activity demonstrated in class can help them better understand the concepts. However, there is still an ongoing effort to lower the currently substantial cost of educational laboratory equipment for undergraduate-level engineering courses. Also, with the COVID-19 crisis, the Spring 2020 academic year took an unexpected turn for academics and students all over the world. Engineering faculty who teach laboratories had to move online and instruct from home. Online course preparation takes more time and effort compared to traditionally designed face-to-face courses and was compounded considering the unprecedented situation where many instructors didn't have time to record data from existing lab equipment or record video in their laboratories. In this paper, we present a Matlab Simscape GUI program designed to simulate modeling and control of dynamical systems for vibrations and control theory courses, and their associated laboratories, as one potential solution for online instruction. To complement the simulation program, online classroom and homework activities were designed using a learning sciences approach connecting several critical educational theories which can bolster student motivation, engagement with the material, and overall learning performance. The simulation is presented along with data from 19 students who completed the associated classroom and homework activities. Survey results probing student perceptions about the value of the learning tasks for the simulation were overwhelmingly positive and indicate this approach holds promise in supporting student learning. 
    more » « less