skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanofiller-Enhanced Soft Non-Gelatin Alginate Capsules for Modified Drug Delivery
Capsules are one of the major solid dosage forms available in a variety of compositions and shapes. Developments in this dosage form are not new, but the production of non-gelatin capsules is a recent trend. In pharmaceutical as well as other biomedical research, alginate has great versatility. On the other hand, the use of inorganic material to enhance material strength is a common research topic in tissue engineering. The research presented here is a combination of qualities of alginate and montmorillonite (MMT). These two materials were used in this research to produce a soft non-gelatin modified-release capsule. Moreover, the research describes a facile benchtop production of these capsules. The produced capsules were critically analyzed for their appearance confirming resemblance with marketed capsules, functionality in terms of drug encapsulation, as well as release and durability.  more » « less
Award ID(s):
1646729
PAR ID:
10417324
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Pharmaceuticals
Volume:
14
Issue:
4
ISSN:
1424-8247
Page Range / eLocation ID:
355
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soft, untethered microrobots composed of biocompatible materials for completing micromanipulation and drug delivery tasks in lab-on-a-chip and medical scenarios are currently being developed. Alginate holds significant potential in medical microrobotics due to its biocompatibility, biodegradability, and drug encapsulation capabilities. Here, we describe the synthesis of MANiACs—Magnetically Aligned Nanorods in Alginate Capsules—for use as untethered microrobotic surface tumblers, demonstrating magnetically guided lateral tumbling via rotating magnetic fields. MANiAC translation is demonstrated on tissue surfaces as well as inclined slopes. These alginate microrobots are capable of manipulating objects over millimeter-scale distances. Finally, we demonstrate payload release capabilities of MANiACs during translational tumbling motion. 
    more » « less
  2. Controlled-release materials are desirable for many delivery applications and have been used to improve the efficiency of fertilizers and pesticides in crop management. Due to their potential to reduce application of toxic chemicals while prolonging exposure to active agents, controlled-release nanomaterials are currently being investigated for increasing agricultural production and preventing overfertilization. Hydrogels are underexplored as controlled-release nanomaterials and can deliver many types of cargo, from metal ions to small molecules. Alginate-based hydrogels are biocompatible and their internal carboxylic acids coordinate agriculturally valuable micronutrients like Cu2+, Zn2+, and Ca2+. Hydrogels comprising ionic and nonionic polymers can coordinate agriculturally valuable micronutrients, and the combination of ionic and nonionic polymers results in hydrogels with tunable release profiles. Alginate, for example, contains carboxylates that ionically cross-link with divalent cations like Cu2+, Zn2+, and Ca2+, while polar moieties on chitin enable nonionic coordination. To our knowledge, soft-material copper-loaded nanoparticles have not yet been applied as controlled-release materials for foliar delivery. In this work, we present the synthesis and micronutrient release characteristics of hydrogel nanoparticles containing Cu2+, which is coordinated by ionic and nonionic polymers. Hydrogel nanoparticles (HNPs) were prepared by liquid–liquid emulsion techniques and cross-linked with Cu2+ to form double-network hydrogels made from alginate and non-cross-linking chitin. Nanoparticles (100–300 nm in diameter) were characterized by cryogenic electron microscopy, nanoparticle tracking analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The copper release profiles of HNPs with different polymer compositions were compared. HNPs containing both chitin and alginate released 8–20 times more copper than HNPs with alginate alone, suggesting that the presence of non-cross-linking polymers improves copper release. Thus, HNP delivery characteristics can be tuned by manipulating intraparticle bond dynamics in the hydrogel polymer matrix. 
    more » « less
  3. Microcapsules provide a microenvironment by improving the protection and delivery of cells and drugs to specific tissue areas, promoting cell integration and tissue regeneration. Effective microcapsules must not only be permeable for micronutrient diffusion but mechanically stable. Alginate hydrogel is one of the commonly used biomaterials for fabricating microcapsules due to its gel-forming ability and low toxicity. However, its mechanical instability, inertness, and excessive porosity have impeded its use. Embedding nanofibrils in the alginate hydrogel microcapsules improves their biological and mechanical properties. In this research, electrospun composite nanofibers of PCL–gelatin (PG) were first fabricated, characterized, and cryoground. The filtered and cryoground powder solution was mixed with the alginate solution and through electrospray, fabricated into microcapsules. Parameters such as flow rate, voltage, and hydrogel composition, which are critical in the electrostatic encapsulation process, were optimized. The microcapsules were further immersed in different solvent environments (DI water, complete media, and PBS), which were observed and compared for their morphology, size distribution, and mechanical stability properties. The average diameters of the PG nanofibers ranged between 0.2 and 2 μm, with an average porosity between 58 and 73%. The average size of the microcapsules varied between 300 and 900 μm, depending on the solvent environment. Overall, results showed an improved alginate 3D hydrogel network suitable for biomedical applications. 
    more » « less
  4. Zhou, Ning-Yi (Ed.)
    ABSTRACT Pseudomonas aeruginosais considered one of the most challenging, drug-resistant, opportunistic pathogens partly due to its ability to synthesize robust biofilms. Biofilm is a mixture of extracellular polymeric substances (EPS) that encapsulates microbial cells, leading to immune evasion, antibiotic resistance, and thus higher risk of infection. In the cystic fibrosis lung environment,P. aeruginosaundergoes a mucoid transition, defined by overproduction of the exopolysaccharide alginate. Alginate encapsulation results in bacterial resistance to antibiotics and the host immune system. Given its role in airway inflammation and chronic infection, alginate is an obvious target to improve treatment forP. aeruginosainfection. Previously, we demonstrated polysaccharide lyase Smlt1473 fromStenotrophomonas maltophiliastrain k279a can catalyze the degradation of multiple polyuronidesin vitro, including D-mannuronic acid (poly-ManA). Poly-ManA is a major constituent ofP. aeruginosaalginate, suggesting that Smlt1473 could have potential application against multidrug-resistantP. aeruginosaand perhaps other microbes with related biofilm composition. In this study, we demonstrate that Smlt1473 can inhibit and degrade alginate fromP. aeruginosa. Additionally, we show that testedP. aeruginosastrains are dominant in acetylated alginate and that all but one have similar M-to-G ratios. These results indicate that variation in enzyme efficacy among the isolates is not primarily due to differences in total EPS or alginate chemical composition. Overall, these results demonstrate Smlt1473 can inhibit and degradeP. aeruginosaalginate and suggest that other factors including rate of EPS production, alginate sequence/chain length, or non-EPS components may explain differences in enzyme efficacy. IMPORTANCEPseudomonas aeruginosais a major opportunistic human pathogen in part due to its ability to synthesize biofilms that confer antibiotic resistance. Biofilm is a mixture of polysaccharides, DNA, and proteins that encapsulate cells, protecting them from antibiotics, disinfectants, and other cleaning agents. Due to its ability to increase antibiotic and immune resistance, the exopolysaccharide alginate plays a large role in airway inflammation and chronicP. aeruginosainfection. As a result, colonization withP. aeruginosais the leading cause of morbidity and mortality in CF patients. Thus, it is an obvious target to improve the treatment regimen forP. aeruginosainfection. In this study, we demonstrate that polysaccharide lyase, Smlt1473, inhibits alginate secretion and degrades established alginate from a variety of mucoidP. aeruginosaclinical isolates. Additionally, Smlt1473 differs from other alginate lyases in that it is active against acetylated alginate, which is secreted during chronic lung infection. These results suggest that Smlt1473 may be useful in treating infections associated with alginate-producingP. aeruginosa, as well as have the potential to reduceP. aeruginosaEPS in non-clinical settings. 
    more » « less
  5. Abstract Implantable, bioresorbable drug delivery systems offer an alternative to current drug administration techniques; allowing for patient‐tailored drug dosage, while also increasing patient compliance. Mechanistic mathematical modeling allows for the acceleration of the design of the release systems, and for prediction of physical anomalies that are not intuitive and may otherwise elude discovery. This study investigates short‐term drug release as a function of water‐mediated polymer phase inversion into a solid depot within hours to days, as well as long‐term hydrolysis‐mediated degradation and erosion of the implant over the next few weeks. Finite difference methods are used to model spatial and temporal changes in polymer phase inversion, solidification, and hydrolysis. Modeling reveals the impact of non‐uniform drug distribution, production and transport of H+ions, and localized polymer degradation on the diffusion of water, drug, and hydrolyzed polymer byproducts. Compared to experimental data, the computational model accurately predicts the drug release during the solidification of implants over days and drug release profiles over weeks from microspheres and implants. This work offers new insight into the impact of various parameters on drug release profiles, and is a new tool to accelerate the design process for release systems to meet a patient specific clinical need. 
    more » « less