Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Catastrophic landslides are often preceded by slow, progressive, accelerating deformation that differs from the persistent motion of slow‐moving landslides. Here, we investigate the motion of a landslide that damaged 12 homes in Rolling Hills Estates (RHE), Los Angeles, California on 8 July 2023, using satellite‐based synthetic aperture radar interferometry (InSAR) and pixel tracking of satellite‐based optical images. To better understand the precursory motion of the RHE landslide, we compared its behavior with local precipitation and with several slow‐moving landslides nearby. Unlike the slow‐moving landslides, we found that RHE was a first‐time progressive failure that failed after one of the wettest years on record. We then applied a progressive failure model to interpret the failure mechanisms and further predict the failure time from the pre‐failure movement of RHE. Our work highlights the importance of monitoring incipient slow motion of landslides, particularly where no discernible historical displacement has been observed.more » « lessFree, publicly-accessible full text available July 16, 2025
-
Abstract On August 14, 2021, aMw7.2 earthquake struck the Tiburon Peninsula of western Haiti triggering thousands of landslides. Three days after the earthquake on August 17, 2021, Tropical Storm Grace crossed shallow waters offshore of southern Haiti triggering more landslides worsening the situation. In the aftermath of these events, several organizations with disaster response capabilities or programs activated to provide information on the location of landslides to first responders on the ground. Utilizing remote sensing to support rapid response, one organization manually mapped initiation point of landslides and three automatically detected landslides. The 2021 Haiti event also provided a unique opportunity to test different automated landslide detection methods that utilized both SAR and optical data in a rapid response scenario where rapid situational awareness was critical. As the methods used are highly replicable, the main goal of this study is to summarize the landslide rapid response products released by the organizations, detection methods, quantify accuracy and provide guidelines on how some of the shortcomings encountered in this effort might be addressed in the future. To support this validation, a manually mapped polygon-based landslide inventory covering the entire affected area was created and is also released through this effort.more » « less
-
Abstract Slow-moving landslides move downslope at velocities that range from mm year−1to m year−1. Such deformations can be measured using satellite-based synthetic aperture radar interferometry (InSAR). We developed a new method to systematically detect and quantify accelerations and decelerations of slowly deforming areas using InSAR displacement time series. The displacement time series are filtered using an outlier detector and subsequently piecewise linear functions are fitted to identify changes in the displacement rate (i.e., accelerations or decelerations). Grouped accelerations and decelerations are inventoried as indicators of potential unstable areas. We tested and refined our new method using a high-quality dataset from the Mud Creek landslide, CA, USA. Our method detects accelerations and decelerations that coincide with those previously detected by manual examination. Second, we tested our method in the region around the Mazar dam and reservoir in Southeast Ecuador, where the time series data were of considerably lower quality. We detected accelerations and decelerations occurring during the entire study period near and upslope of the reservoir. Application of our method results in a wealth of information on the dynamics of the surface displacement of hillslopes and provides an objective way to identify changes in displacement rates. The displacement rates, their spatial variation, and the timing of accelerations and decelerations can be used to study the physical behavior of a slow-moving slope or for regional hazard assessment by linking the timing of changes in displacement rates to landslide causal and triggering factors.more » « less
-
Abstract. Rapid detection of landslides is critical for emergency response, disaster mitigation, and improving our understanding of landslide dynamics. Satellite-based synthetic aperture radar (SAR) can be used to detect landslides, often within days of a triggering event, because it penetrates clouds, operates day and night, and is regularly acquired worldwide. Here we present a SAR backscatter change approach in the cloud-based Google Earth Engine (GEE) that uses multi-temporal stacks of freely available data from the Copernicus Sentinel-1 satellites to generate landslide density heatmaps for rapid detection. We test our GEE-based approach on multiple recent rainfall- and earthquake-triggered landslide events. Our ability to detect surface change from landslides generally improves with the total number of SAR images acquired before and after a landslide event, by combining data from both ascending and descending satellite acquisition geometries and applying topographic masks to remove flat areas unlikely to experience landslides. Importantly, our GEE approach does not require downloading a large volume of data to a local system or specialized processing software, which allows the broader hazard and landslide community to utilize and advance these state-of-the-art remote sensing data for improved situational awareness of landslide hazards.more » « less
-
Abstract. In steep wildfire-burned terrains, intense rainfall can produce large runoff that can trigger highly destructive debris flows. However, the abilityto accurately characterize and forecast debris flow susceptibility in burned terrains using physics-based tools remains limited. Here, we augmentthe Weather Research and Forecasting Hydrological modeling system (WRF-Hydro) to simulate both overland and channelized flows and assess postfiredebris flow susceptibility over a regional domain. We perform hindcast simulations using high-resolution weather-radar-derived precipitation andreanalysis data to drive non-burned baseline and burn scar sensitivity experiments. Our simulations focus on January 2021 when an atmospheric rivertriggered numerous debris flows within a wildfire burn scar in Big Sur – one of which destroyed California's famous Highway 1. Compared to thebaseline, our burn scar simulation yields dramatic increases in total and peak discharge and shorter lags between rainfall onset and peakdischarge, consistent with streamflow observations at nearby US Geological Survey (USGS) streamflow gage sites. For the 404 catchments located inthe simulated burn scar area, median catchment-area-normalized peak discharge increases by ∼ 450 % compared to the baseline. Catchmentswith anomalously high catchment-area-normalized peak discharge correspond well with post-event field-based and remotely sensed debris flowobservations. We suggest that our regional postfire debris flow susceptibility analysis demonstrates WRF-Hydro as a compelling new physics-basedtool whose utility could be further extended via coupling to sediment erosion and transport models and/or ensemble-based operational weatherforecasts. Given the high-fidelity performance of our augmented version of WRF-Hydro, as well as its potential usage in probabilistic hazardforecasts, we argue for its continued development and application in postfire hydrologic and natural hazard assessments.more » « less