skip to main content


Title: Pacific lamprey inspired climbing
Abstract

Snakes and their bio-inspired robot counterparts have demonstrated locomotion on a wide range of terrains. However, dynamic vertical climbing is one locomotion strategy that has received little attention in the existing snake robotics literature. We demonstrate a new scansorial gait and robot inspired by the locomotion of the Pacific lamprey. This new gait allows a robot to steer while climbing on flat, near-vertical surfaces. A reduced-order model is developed and used to explore the relationship between body actuation and the vertical and lateral motions of the robot. Trident, the new wall climbing lamprey-inspired robot, demonstrates dynamic climbing on a flat near vertical carpeted wall with a peak net vertical stride displacement of 4.1 cm per step. Actuating at 1.3 Hz, Trident attains a vertical climbing speed of 4.8 cm s−1(0.09 Bl s−1) at specific resistance of 8.3. Trident can also traverse laterally at 9 cm s−1(0.17 Bl s−1). Moreover, Trident is able to make 14% longer strides than the Pacific lamprey when climbing vertically. The computational and experimental results demonstrate that a lamprey-inspired climbing gait coupled with appropriate attachment is a useful climbing strategy for snake robots climbing near vertical surfaces with limited push points.

 
more » « less
Award ID(s):
1935278
PAR ID:
10417547
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
18
Issue:
4
ISSN:
1748-3182
Page Range / eLocation ID:
Article No. 046013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Here, we present a multimodal, lamprey-inspired, 3D printed soft fluidic robot/actuator based on an antagonistic pneunet architecture. The Pacific Lamprey is a unique fish which is able to climb wetted vertical surfaces using its suction-cup mouth and snake-like morphology. The continuum structure of these fish lends itself to soft robots, given their ability to form continuous bends. Additionally, the high gravimetric and volumetric power density attainable by soft actuators make them good candidates for climbing robots. Fluidic soft robots are often limited in the forces they can exert due to limitations on their actuation pressure. This actuator is able to operate at relatively high pressures (for soft robots) of 756 kPa (95 psig) with a −3 dB bandwidth of 2.23 Hz to climb at rates exceeding 18 cm/s. The robot is capable of progression on a vertical surface using a compliant microspine attachment as the functional equivalent of the lamprey’s more complex suction-cup mouth. The paper also presents the details of the 3D-printed manufacturing of this actuator/robot. 
    more » « less
  2. In this paper we present swimming and modeling for Trident, a three-link lamprey-inspired robot that is able to climb on flat smooth walls. We explore two gaits proposed to work for linear swimming, and three gaits for turning maneuvers. We compare the experimental results obtained from these swimming experiments with two different reduced order fluid interaction models, one a previously published potential flow model, and the other a slender cylinder model we developed. We find that depending on the the parameters of swimming chosen, we are able to move forward, backward and sideways with a peak speed of 2.5 cm/s. We identify the conditions when these models apply and aspects that will require additional complexity. 
    more » « less
  3. Terrain irregularities in natural environments present mobility challenges for autonomous robots and vehicles. Loosely consolidated sandy slopes flow unpredictably when perturbed, often leading to locomotion failure. Systematic experiments with various robot morphologies on flowable terrains feature open‐loop quasistatic gait strategies that remodel the terrain to aid locomotor kinematics. On a sloped terrain of granular media near the critical angle, a laboratory‐scale rover robot induces a flow via a localized fluidization gait to remodel local terrain and succeed in locomotion. A Bayesian optimization machine learning approach that modulates this gait strategy then finds a pattern of selectively fluidizing and solidifying terrain to climb slopes rapidly. In a biped walker robot, a cleated foot design dynamically manipulates the stress fields of flowable slopes. The deeply submerged cleats remodel the shear response of the material by creating jammed regions behind them which then improve forward progression by reducing slip when compared to a flat foot. The “robophysics” approach of systematic experiments exploring terrain reconfiguration combined with future machine learning models of flowable terrain evolution can augment gait discovery for future robots. 
    more » « less
  4. Soft robots, known for their compliance and deformable nature, have emerged as a transformative field, giving rise to various prototypes and locomotion capabilities. Despite continued research efforts that have shown significant promise, the quest for energy-efficient mobility in soft-limbed robots remains relatively elusive. We introduce a discrete locomotion gait called “tumbling,” designed to conserve energy and implemented in a topologically symmetric soft-limbed robot. The incorporation of tumbling enhances the overall locomotive abilities of soft-limbed robots, offering advantages such as increased agility, adaptability, and the ability to correct orientation, which are essential for navigating non-engineered environments that include natural-like irregular terrains with obstacles. The principle behind tumbling locomotion involves a deliberate shift in the robot's center of gravity in the direction of motion, guided by the kinematics of its soft limbs. To validate this locomotion strategy, we developed a robot simulation model operating within a virtual environment that incorporates physics and contact interactions. After optimizing the tumbling locomotion strategy through simulations, we conducted experimental tests on a physical robot prototype. The experiments validate the effectiveness of the proposed tumbling gait. We conducted an energy cost analysis to compare the tumbling locomotion with the previously reported crawling gait of the robot. The results of this analysis demonstrate that tumbling represents an energy-efficient mode of locomotion for soft robots, saving up to 60% and 65% energy than crawling locomotion on flat and natural-like irregular terrains, respectively. 
    more » « less
  5. Conventional catheter- or probe-based in vivo biomedical sensing is uncomfortable, inconvenient, and sometimes infeasible for longterm monitoring. Existing implantable sensors often require an invasive procedure for sensor placement. Untethered soft robots with the capability to deliver the sensor to the desired monitoring point hold great promise for minimally invasive biomedical sensing. Inspired by the locomotion modes of snakes, we present here a soft kirigami robot for sensor deployment and real-time wireless sensing. The locomotion mechanism of the soft robot is achieved by kirigami patterns that offer asymmetric tribological properties that mimic the skin of the snake. The robot exhibits good deployability, excellent load capacity (up to 150 times its own weight), high-speed locomotion (0.25 body length per step), and wide environmental adaptability with multimodal movements (obstacle crossing, locomotion in wet and dry conditions, climbing, and inverted crawling). When integrated with passive sensors, the versatile soft robot can locomote inside the human body, deliver the passive sensor to the desired location, and hold the sensor in place for real-time monitoring in a minimally invasive manner. The proof-of-concept prototype demonstrates that the platform can perform real-time impedance monitoring for the diagnosis of gastroesophageal reflux disease. 
    more » « less