Abstract The rapid advancement in personalized healthcare has driven the development of wearable biomedical devices for real-time biomarker monitoring and diagnosis. Traditional invasive blood-based diagnostics are painful and limited to sporadic health snapshots. To address these limitations, microneedle-based sensing platforms have emerged, utilizing interstitial fluid (ISF) as an alternative biofluid for continuous health monitoring in a minimally invasive and painless manner. This review aims to provide a comprehensive overview of microneedle sensor technology, covering microneedle design, fabrication methods, and sensing strategy. Additionally, it explores the integration of monitoring electronics for continuous on-body monitoring. Representative applications of microneedle sensing platforms for both monitoring and therapeutic purposes are introduced, highlighting their potential to revolutionize personalized healthcare. Finally, the review discusses the remaining challenges and future prospects of microneedle technology. Graphical Abstract
more »
« less
Bio-Inspired Untethered Robot-Sensor Platform for Minimally Invasive Biomedical Sensing
Conventional catheter- or probe-based in vivo biomedical sensing is uncomfortable, inconvenient, and sometimes infeasible for longterm monitoring. Existing implantable sensors often require an invasive procedure for sensor placement. Untethered soft robots with the capability to deliver the sensor to the desired monitoring point hold great promise for minimally invasive biomedical sensing. Inspired by the locomotion modes of snakes, we present here a soft kirigami robot for sensor deployment and real-time wireless sensing. The locomotion mechanism of the soft robot is achieved by kirigami patterns that offer asymmetric tribological properties that mimic the skin of the snake. The robot exhibits good deployability, excellent load capacity (up to 150 times its own weight), high-speed locomotion (0.25 body length per step), and wide environmental adaptability with multimodal movements (obstacle crossing, locomotion in wet and dry conditions, climbing, and inverted crawling). When integrated with passive sensors, the versatile soft robot can locomote inside the human body, deliver the passive sensor to the desired location, and hold the sensor in place for real-time monitoring in a minimally invasive manner. The proof-of-concept prototype demonstrates that the platform can perform real-time impedance monitoring for the diagnosis of gastroesophageal reflux disease.
more »
« less
- Award ID(s):
- 2238363
- PAR ID:
- 10491497
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Applied Materials & Interfaces
- Volume:
- 15
- Issue:
- 50
- ISSN:
- 1944-8244
- Page Range / eLocation ID:
- 58839 to 58849
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soft robotics holds tremendous potential for various applications, especially in unstructured environments such as search and rescue operations. However, the lack of autonomy and teleoperability, limited capabilities, absence of gait diversity and real-time control, and onboard sensors to sense the surroundings are some of the common issues with soft-limbed robots. To overcome these limitations, we propose a spatially symmetric, topologically-stable, soft-limbed tetrahedral robot that can perform multiple locomotion gaits. We introduce a kinematic model, derive locomotion trajectories for different gaits, and design a teleoperation mechanism to enable real-time human-robot collaboration. We use the kinematic model to map teleoperation inputs and ensure smooth transitions between gaits. Additionally, we leverage the passive compliance and natural stability of the robot for toppling and obstacle navigation. Through experimental tests, we demonstrate the robot's ability to tackle various locomotion challenges, adapt to different situations, and navigate obstructed environments via teleoperation.more » « less
-
In this work, we present two embedded soft optical waveguide sensors designed for real-time onboard configuration sensing in soft actuators for robotic locomotion. Extending the contributions of our collaborators who employed external camera systems to monitor the gaits of twisted-beam structures, we strategically integrate our OptiGap sensor system into these structures to monitor their dynamic behavior. The system is validated through machine learning models that correlate sensor data with camera-based motion tracking, achieving high accuracy in predicting forward or reverse gaits and validating its capability for real-time sensing. Our second sensor, consisting of a square cross-section fiber pre-twisted to 360 degrees, is designed to detect the chirality of reconfigurable twisted beams. Experimental results confirm the sensor’s effectiveness in capturing variations in light transmittance corresponding to twist angle, serving as a reliable chirality sensor. The successful integration of these sensors not only improves the adaptability of soft robotic systems but also opens avenues for advanced control algorithms.more » « less
-
Abstract A passive resonant sensor with kirigami patterning is presented to wirelessly report material deformation in closed systems. The sensors are fabricated from copper‐coated polyimide by etching a conductive Archimedean spiral and then laser cutting kirigami patterns. The sensor response is defined as the resonant frequency in the transmission scattering parameter signal (S21), which is captured via a benchtop vector network analyzer. The sensors are tested over a 0–22 cm range of extension and show a significant shift in resonant frequency (e.g., 90 MHz shift for 10 cm stretch). Furthermore, the effect of resonator coil pitch on the extension sensor gain (MHz cm−1) and linear span of the sensor is studied. The repeatability of the sensor gain is confirmed by performing hysteresis cycles. The sensors is coated with polydimethylsiloxane films to protect from electrical shorting in aqueous environments. The coated resonators are placed in a pipe to report flow rates. The sensor with 1 mm coating is found to have the largest gain (0.17 MHz⋅s mL−1) and linear span (10–100 mL s−1). Thus, flexible resonant sensors with kirigami‐inspired patterns can be tuned via geometric and coating considerations to wirelessly report a large range of extension lengths for potential uses in health monitoring, motion tracking, deformation detection, and soft robotics.more » « less
-
null (Ed.)Robot-assisted minimally invasive surgery com- bines the skills and techniques of highly-trained surgeons with the robustness and precision of machines. Several advantages include precision beyond human dexterity alone, greater kinematic degrees of freedom at the surgical tool tip, and possibilities in remote surgical practices through teleoperation. Nevertheless, obtaining accurate force feedback during surgical operations remains a challenging hurdle. Though direct force sensing using tool tip mounted sensors is theoretically possible, it is not amenable to required sterilization procedures. Vision-based force estimation according to real-time analysis of tissue deformation serves as a promising alternative. In this application, along with numerous related research in robot- assisted minimally invasive surgery, segmentation of surgical instruments in endoscopic images is a prerequisite. Thus, a surgical tool segmentation algorithm robust to partial occlusion is proposed using DFT shape matching of robot kinematics shape prior (u) fused with log likelihood mask (Q) in the Opponent color space to generate final mask (U). Implemented on the Raven II surgical robot system, a real-time performance robust to tool tip orientation and up to 6 fps without GPU acceleration is achieved.more » « less