skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Convergence of the gradient flow of renormalized volume to convex cores with totally geodesic boundary
We consider the Weil–Petersson gradient vector field of renormalized volume on the deformation space of convex cocompact hyperbolic structures on (relatively) acylindrical manifolds. In this paper we prove the conjecture that the flow has a global attracting fixed point at the unique structure $$M_{\rm geod}$$ with minimum convex core volume.  more » « less
Award ID(s):
2005498 2001997 1906095
PAR ID:
10417736
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Compositio Mathematica
Volume:
159
Issue:
4
ISSN:
0010-437X
Page Range / eLocation ID:
830 to 859
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using the concepts of mixed volumes and quermassintegrals of convex geometry, we derive an exact formula for the exclusion volume v ex ( K ) for a general convex body K that applies in any space dimension. While our main interests concern the rotationally-averaged exclusion volume of a convex body with respect to another convex body, we also describe some results for the exclusion volumes for convex bodies with the same orientation. We show that the sphere minimizes the dimensionless exclusion volume v ex ( K )/ v ( K ) among all convex bodies, whether randomly oriented or uniformly oriented, for any d , where v ( K ) is the volume of K . When the bodies have the same orientation, the simplex maximizes the dimensionless exclusion volume for any d with a large- d asymptotic scaling behavior of 2 2 d / d 3/2 , which is to be contrasted with the corresponding scaling of 2 d for the sphere. We present explicit formulas for quermassintegrals W 0 ( K ), …, W d ( K ) for many different nonspherical convex bodies, including cubes, parallelepipeds, regular simplices, cross-polytopes, cylinders, spherocylinders, ellipsoids as well as lower-dimensional bodies, such as hyperplates and line segments. These results are utilized to determine the rotationally-averaged exclusion volume v ex ( K ) for these convex-body shapes for dimensions 2 through 12. While the sphere is the shape possessing the minimal dimensionless exclusion volume, we show that, among the convex bodies considered that are sufficiently compact, the simplex possesses the maximal v ex ( K )/ v ( K ) with a scaling behavior of 2 1.6618… d . Subsequently, we apply these results to determine the corresponding second virial coefficient B 2 ( K ) of the aforementioned hard hyperparticles. Our results are also applied to compute estimates of the continuum percolation threshold η c derived previously by the authors for systems of identical overlapping convex bodies. We conjecture that overlapping spheres possess the maximal value of η c among all identical nonzero-volume convex overlapping bodies for d ⩾ 2, randomly or uniformly oriented, and that, among all identical, oriented nonzero-volume convex bodies, overlapping simplices have the minimal value of η c for d ⩾ 2. 
    more » « less
  2. We prove that the multiplicity of a filtration of a local ring satisfies various convexity properties. In particular, we show the multiplicity is convex along geodesics. As a consequence, we prove that the volume of a valuation is log convex on simplices of quasi-monomial valuations and give a new proof of a theorem of Xu and Zhuang on the uniqueness of normalized volume minimizers. In another direction, we generalize a theorem of Rees on multiplicities of ideals to filtrations and characterize when the Minkowski inequality for filtrations is an equality under mild assumptions. 
    more » « less
  3. Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of an n-dimensional convex body within multiplicative error ϵ using Õ (n3+n2.5/ϵ) queries to a membership oracle and Õ (n5+n4.5/ϵ) additional arithmetic operations. For comparison, the best known classical algorithm uses Õ (n4+n3/ϵ2) queries and Õ (n6+n5/ϵ2) additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of "Chebyshev cooling", where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error. 
    more » « less
  4. In this paper we propose a convex Sum-of-Squares optimization problem for finding outer approximations of forward reachable sets for nonlinear uncertain Ordinary Differential Equations (ODE’s) with either (or both) L2 or point-wise bounded input disturbances. To make our approximations tight we seek to minimize the volume of our approximation set. Our approach to volume minimization is based on the use of a convex determinant-like objective function.We provide several numerical examples including the Lorenz system and the Van der Pol oscillator. 
    more » « less
  5. Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of ann-dimensional convex body within multiplicative error ε usingÕ(n3+ n2.5/ε) queries to a membership oracle andÕ(n5+n4.5/ε)additional arithmetic operations. For comparison, the best known classical algorithm usesÕ(n3.5+n32)queries andÕ(n5.5+n52)additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of “Chebyshev cooling,” where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error. To complement our quantum algorithms, we also prove that volume estimation requiresΩ (√ n+1/ε)quantum membership queries, which rules out the possibility of exponential quantum speedup innand shows optimality of our algorithm in 1/ε up to poly-logarithmic factors. 
    more » « less