skip to main content


Title: The amalgamation of Gondwana: calcite twinning and finite strains from the early–late Paleozoic Buzios, Ross, Kurgiakh and Gondwanide orogens
Abstract Orientated carbonate (calcite twinning strains; n = 78 with 2414 twin measurements) and quartzites (finite strains; n = 15) were collected around Gondwana to study the deformational history associated with the amalgamation of the supercontinent. The Buzios orogen (545–500 Ma), within interior Gondwana, records the high-grade collisional orogen between the São Francisco Craton (Brazil) and the Congo–Angola Craton (Angola and Namibia), and twinning strains in calc-silicates record a SE–NW shortening fabric parallel to the thrust transport. Along Gondwana's southern margin, the Saldanian–Ross–Delamerian orogen (590–480 Ma) is marked by a regional unconformity that cuts into deformed Neoproterozoic–Ordovician sedimentary rocks and associated intrusions. Cambrian carbonate is preserved in the central part of the southern Gondwana margin, namely in the Kango Inlier of the Cape Fold Belt and the Ellsworth, Pensacola and Transantarctic mountains. Paleozoic carbonate is not preserved in the Ventana Mountains in Argentina, in the Falkland Islands/Islas Malvinas or in Tasmania. Twinning strains in these Cambrian carbonate strata and synorogenic veins record a complex, overprinted deformation history with no stable foreland strain reference. The Kurgiakh orogen (490 Ma) along Gondwana's northern margin is also defined by a regional Ordovician unconformity throughout the Himalaya; these rocks record a mix of layer-parallel and layer-normal twinning strains with a likely Himalayan (40 Ma) strain overprint and no autochthonous foreland strain site. Conversely, the Gondwanide orogen (250 Ma) along Gondwana's southern margin has three foreland (autochthonous) sites for comparison with 59 allochthonous thrust-belt strain analyses. From west to east, these include: finite strains from Devonian quartzite preserve a layer-parallel shortening (LPS) strain rotated clockwise in the Ventana Mountains of Argentina; frontal (calcite twins) and internal (quartzite strains) samples in the Cape Fold Belt preserve a LPS fabric that is rotated clockwise from the autochthonous north–south horizontal shortening in the foreland strain site; Falkland Devonian quartzite shows the same clockwise rotation of the LPS fabric; and Permian limestone and veins in Tasmania record a thrust transport-parallel LPS fabric. Early amalgamation of Gondwana (Ordovician) is preserved by local layer-parallel and layer-normal strain without evidence of far-field deformation, whereas the Gondwanide orogen (Permian) is dominated by layer-parallel shortening, locally rotated by dextral shear along the margin, that propagated across the supercontinent.  more » « less
Award ID(s):
2137467
NSF-PAR ID:
10417772
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Geological Society, London, Special Publications
Volume:
531
Issue:
1
ISSN:
0305-8719
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cenozoic exhumation patterns in the internal and external Zagros reveal a long‐term deformation record associated with geodynamic restructuring of Arabia‐Eurasia collisional zone from continental subduction to plate suturing, which can be evaluated from thermochronometric, provenance, and subsidence analyses. Thermal modeling of zircon and apatite (U‐Th)/He ages and apatite fission track data from the Sanandaj‐Sirjan Zone (SSZ) indicates exhumation and inferred uplift along the leading edge of Eurasia starting in the Late Eocene (~35 Ma), coeval with initial foreland flexural subsidence of Arabia. Together with deceleration in Arabia‐Eurasia convergence and diminished subduction‐related magmatism, these events signal the final Neotethys closure and onset of long‐term (15–20 Myr) Arabian continental subduction beneath Eurasia, facilitated by the attenuated architecture of the precollisional Arabian margin. From 35 to 20 Ma, crustal shortening was relatively subdued and restricted to areas along the Arabia‐Eurasia plate boundary and diffuse inversion structures within continental interiors. Acceleration in SSZ cooling/exhumation rates from 19 to 16 Ma was synchronous with rapid basin subsidence and clastic progradation in the Zagros foreland. These events were contemporaneous with 20‐ to 16‐Ma surge in calc‐alkaline magmatism in central Iran and may have been linked to reorganization/deflection of Arabian plate vectors during the main phase of Red Sea rifting at 19–18 Ma. Transition from continental subduction to Arabia‐Eurasia suturing by ~12 Ma forced a transfer of strain from the subduction zone to intraplate deformational structures. This was marked by rapid outward expansion of the Zagros orogen, involving a shift in exhumation from the SSZ to Zagros fold‐thrust belt and Iranian plate interior.

     
    more » « less
  2. Abstract

    Documenting the spatio‐temporal progression of deformation within fold‐thrust belts is critical for understanding orogen dynamics. In the North American Cordillera, the geometry, magnitude, and timing of contractional deformation across a broad region of Nevada known as the “Sevier hinterland” has been difficult to characterize due to minimal exposures of syn‐contractional sedimentary rocks and overprinting of Cenozoic extension. To address this, we present geologic mapping and U‐Pb zircon geochronology from three exposures of the Cretaceous Newark Canyon Formation (NCF) in central Nevada. In the Cortez Mountains, NCF deposition between ∼119 and 110 Ma is hypothesized to be related to generation of relief by thrusting/folding to the west. In the Fish Creek Range, NCF deposition between ∼130 and 100 Ma was related to motion on an east‐vergent thrust fault. In the Pancake Range, NCF deposition is bracketed between ∼129 and 66 Ma and post‐dated east‐vergent folding. We incorporate these timing constraints into a compilation of deformation timing in the Sevier hinterland. Late Jurassic (∼165 and 155 Ma) shortening, which is largely post‐dated shortening in the Luning‐Fencemaker thrust belt to the west and pre‐dated initial deformation in the Sevier fold‐thrust belt to the east, is interpreted to represent diffuse, low‐magnitude deformation that accompanied eastward propagation of the basal Cordilleran décollement. Cretaceous (∼130 and 75 Ma) hinterland shortening, which includes deformation associated with NCF deposition, was contemporaneous with shortening in the Sevier fold‐thrust belt. This is interpreted to represent long‐duration strain partitioning between the foreland and hinterland during continued coupling above the basal décollement and the progressive westward underthrusting of thick North American lower‐middle crust.

     
    more » « less
  3. The Ross orogenic belt in Antarctica is one of several Neoproterozoic-early Palaeozoic orogens that crisscrossed Gondwana and are associated with Gondwana’s assembly. We present new age data from the Queen Maud Mountains, Ross orogen, from areas that hitherto have lacked precise ages from the local plutonic rocks. The zircon U-Pb igneous crystallization ages (n = 7) and a hornblende 40Ar/39Ar cooling age (n = 1) constrain plutonism to primarily lie within the Cambrian to Ordovician. Cumulative zircon U-Pb crystallization age data yield polymodal age distributions (516 Ma, 506–502 Ma, and 488 Ma age peaks) that are similar to other areas of the Queen Maud-Horlick Mountains, consistent with regional magmatic flare-ups along the Pacific-Gondwana margin during these times. The ages of deformed plutons constrain deformation to the Cambrian (Series 2) to Ordovician (Lower), with some regions indicating a transition to post-tectonic magmatism and cooling at ~509-470 Ma. Collectively, the data indicate that the Queen Maud-Horlick Mountains share a similar petrotectonic history with other regions of the Pacific-Gondwana margin, providing new evidence that this tectonostratigraphic province is part of and not exotic to the larger igneous-sedimentary successions developed in the peri-Gondwana realm under a broadly convergent margin setting. 
    more » « less
  4. Uplift and amalgamation of the high-elevation (>3000 m) Tian Shan and Pamir ranges in Central Asia restricts westerly atmospheric flow and thereby limits moisture delivery to the leeward Taklimakan Desert in the Tarim Basin (<1500 m), the second largest modern sand dune desert on Earth. Although some research suggests that the hyper-arid conditions observed today in the Tarim Basin developed by ca. 25 Ma, stratigraphic evidence suggests the first erg system did not appear until 12.2 Ma. To address this controversy and to understand the tectonic influences on climate in Central Asia, we studied a continuous, 3800-m-thick stratigraphic section deposited from 15.1 to 0.9 Ma now exposed within the western Kepintagh fold-and-thrust belt in the southern Tian Shan foreland. We present new detrital zircon data (n = 839), new carbonate oxygen (δ18Oc) and carbon (δ13Cc) stable isotope compositions (n = 368), structural modeling, and stratigraphic observations, and combine these data with recently published magnetostratigraphy and regional studies to reconstruct the history of deposition, deformation, and climate change in the northwestern Tarim Basin. We find that basins along the southern (this study) and northern (i.e., Ili Basin) margins of the Tian Shan were likely receiving similar westerly precipitation by 15 Ma (δ18Oc = ∼−8‰) and had similar lacustrine-playa environments at ca. 13.5 Ma, despite differences in sedimentary provenance. At ca. 12 Ma, an erg desert formed adjacent to the southern Tian Shan in the northwestern Tarim Basin, coincident with a mid- to late Miocene phase of deformation and exhumation within both the Pamir and southern Tian Shan. Desertification at ca. 12 Ma was marked by a negative δ18Oc excursion from −7.8 ± 0.4‰ to −8.7 ± 0.7‰ in the southern Tian Shan foreland (this study), coeval with a negative δ18Oc excursion (∼−11 to −13‰) in the Tajik Basin, west of the Pamir. These data suggest that only after ca. 12 Ma did the Pamir-Tian Shan create a high-elevation barrier that effectively blocked westerly moisture, forming a rain shadow in the northwestern Tarim Basin. After 7 Ma, the southern Tian Shan foreland migrated southward as this region experienced widespread deformation. In our study area, rapid shortening and deformation above two frontal foreland faults initiated between 6.0 and 3.5 Ma resulted in positive δ13Cc excursions to values close to 0‰, which is interpreted to reflect exhumation in the Tian Shan and recycling of Paleozoic carbonates. Shortening led to isolation of the study site as a piggy-back basin by 3.5 Ma, when the sediment provenance was limited to the exhumed Paleozoic basement rocks of the Kepintagh fold belt. The abrupt sedimentologic and isotopic changes observed in the southern Tian Shan foreland appear to be decoupled from late Cenozoic global climate change and can be explained entirely by local tectonics. This study highlights how tectonics may overprint the more regional and global climate signals in active tectonic settings. 
    more » « less
  5. Abstract

    The Andes of western Argentina record spatiotemporal variations in morphology, basin geometry, and structural style that correspond with changes in crustal inheritance and convergent margin dynamics. Above the modern Pampean flat‐slab subduction segment (27–33°S), retroarc shortening generated a fold‐thrust belt and intraforeland basement uplifts that converge north of ∼29°S, providing opportunities to explore the effects of varied deformation and subduction regimes on synorogenic sedimentation. We integrate new detrital zircon U‐Pb and apatite (U‐Th)/He analyses with sequentially restored, flexurally balanced cross sections and thermokinematic models at ∼28.5–30°S to link deformation with resulting uplift, erosion, and basin accumulation histories. Tectonic subsidence, topographic evolution, and thermochronometric cooling records point to (a) shortening and distal foreland basin accumulation at ∼18–16 Ma, (b) thrust belt migration, changes in sediment provenance, and enhanced flexural subsidence from ∼16 to 9 Ma, (c) intraforeland basement deformation, local flexure, and drainage reorganization at ∼12–7 Ma, and (d) out‐of‐sequence shortening and exhumation of foreland basin fill by ∼8–2 Ma. Thrust belt kinematics and the reactivation of basement heterogeneities strongly controlled tectonic load configurations and subsidence patterns. Geo/thermochronological data and model results resolve increased shortening and combined thrust belt and intraforeland basement loading in response to ridge collision and Neogene shallowing of the subducted oceanic slab. Finally, this study demonstrates the utility of integrated flexural thermokinematic and erosion modeling for evaluating the geometries, rates, and potential drivers of retroarc deformation and foreland basin evolution during changes in subduction.

     
    more » « less