skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shear rheology of a dilute suspension of thin rings
The rheology of suspensions of rings (tori) rotating in an unbounded low Reynolds number simple shear flow is calculated using numerical simulations at dilute particle number densities ( n ≪ 1 ). Suspensions of non-Brownian rings are studied by computing pair interactions that include hydrodynamic interactions modeled using slender body theory and particle collisions modeled using a short-range repulsive force. Particle contact and hydrodynamic interactions were found to have comparable influences on the steady-state Jeffery orbit distribution. The average tilt of the ring away from the flow-vorticity plane increased during pairwise interactions compared to the tilt associated with Jeffery rotation and the steady-state orbit distribution. Particle stresses associated with the increased tilt during the interaction were found to be comparable to the stresses induced directly by particle contact forces and the hydrodynamic velocity disturbances of other particles. The hydrodynamic diffusivity coefficients in the gradient and vorticity directions were also obtained and were found to be two orders of magnitude larger than the corresponding values in fiber suspensions at the same particle concentrations. Rotary Brownian dynamics simulations of isolated Brownian rings were used to understand the shear rate dependence of suspension rheology. The orbit distribution observed in the regime of weak Brownian motion, P e ≫ ϕ T − 3, was surprisingly similar to that obtained from pairwise interaction calculations of non-Brownian rings. Here, the Peclet number P e is the ratio of the shear rate and the rotary diffusivity of the particle and ϕ T is the effective inverse-aspect ratio of the particle (approximately equal to 2 π times the inverse of its non-dimensional Jeffery time period). Thus, the rheology results obtained from pairwise interactions should retain accuracy even for weakly Brownian rings ( n ≪ 1 and ϕ T − 3 ≪ P e ).  more » « less
Award ID(s):
2206851
PAR ID:
10417821
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Rheology
Volume:
67
Issue:
3
ISSN:
0148-6055
Page Range / eLocation ID:
723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the orientation dynamics of anisotropic colloidal particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in shear flow, the orientation dynamics of non-spherical Brownian particles are poorly understood. Here we analytically calculate the time-dependent orientation distributions for non-spherical axisymmetric particles confined to rotate in the flow–gradient plane, in the limit of small but non-zero Brownian diffusivity. For continuous shear, despite the complicated dynamics arising from the particle rotations, we find a coordinate change that maps the orientation dynamics to a diffusion equation with a remarkably simple ratio of the enhanced rotary diffusivity to the zero shear diffusion: $$D_{eff}^{r}/D_{0}^{r}=(3/8)(p-1/p)^{2}+1$$ , where $$p$$ is the particle aspect ratio. For oscillatory shear, the enhanced diffusion becomes orientation dependent and drastically alters the long-time orientation distributions. We describe a general method for solving the time-dependent oscillatory shear distributions and finding the effective diffusion constant. As an illustration, we use this method to solve for the diffusion and distributions in the case of triangle-wave oscillatory shear and find that they depend strongly on the strain amplitude and particle aspect ratio. These results provide new insight into the time-dependent rheology of suspensions of anisotropic particles. For continuous shear, we find two distinct diffusive time scales in the rheology that scale separately with aspect ratio $$p$$ , as $$1/D_{0}^{r}p^{4}$$ and as $$1/D_{0}^{r}p^{2}$$ for $$p\gg 1$$ . For oscillatory shear flows, the intrinsic viscosity oscillates with the strain amplitude. Finally, we show the relevance of our results to real suspensions in which particles can rotate freely. Collectively, the interplay between shear-induced rotations and diffusion has rich structure and strong effects: for a particle with aspect ratio 10, the oscillatory shear intrinsic viscosity varies by a factor of $${\approx}2$$ and the rotational diffusion by a factor of $${\approx}40$$ . 
    more » « less
  2. Three-phase suspensions, of liquid that suspends dispersed solid particles and gas bubbles, are common in both natural and industrial settings. Their rheology is poorly constrained, particularly for high total suspended fractions (≳0.5). We use a dam-break consistometer to characterize the rheology of suspensions of (Newtonian) corn syrup, plastic particles and CO 2 bubbles. The study is motivated by a desire to understand the rheology of magma and lava. Our experiments are scaled to the volcanic system: they are conducted in the non-Brownian, non-inertial regime; bubble capillary number is varied across unity; and bubble and particle fractions are 0 ≤  ϕ gas  ≤ 0.82 and 0 ≤  ϕ solid  ≤ 0.37, respectively. We measure flow-front velocity and invert for a Herschel–Bulkley rheology model as a function of ϕ gas , ϕ solid , and the capillary number. We find a stronger increase in relative viscosity with increasing ϕ gas in the low to intermediate capillary number regime than predicted by existing theory, and find both shear-thinning and shear-thickening effects, depending on the capillary number. We apply our model to the existing community code for lava flow emplacement, PyFLOWGO, and predict increased viscosity and decreased velocity compared with current rheological models, suggesting existing models may not adequately account for the role of bubbles in stiffening lavas. 
    more » « less
  3. Debris flows are dense and fast-moving complex suspensions of soil and water that threaten lives and infrastructure. Assessing the hazard potential of debris flows requires predicting yield and flow behavior. Reported measurements of rheology for debris flow slurries are highly variable and sometimes contradictory due to heterogeneity in particle composition and volume fraction ( ϕ ) and also inconsistent measurement methods. Here we examine the composition and flow behavior of source materials that formed the postwildfire debris flows in Montecito, CA, in 2018, for a wide range of ϕ that encapsulates debris flow formation by overland flow. We find that shear viscosity and yield stress are controlled by the distance from jamming, Δ ϕ = ϕ m − ϕ , where the jamming fraction ϕ m is a material parameter that depends on grain size polydispersity and friction. By rescaling shear and viscous stresses to account for these effects, the data collapse onto a simple nondimensional flow curve indicative of a Bingham plastic (viscoplastic) fluid. Given the highly nonlinear dependence of rheology on Δ ϕ , our findings suggest that determining the jamming fraction for natural materials will significantly improve flow models for geophysical suspensions such as hyperconcentrated flows and debris flows. 
    more » « less
  4. An exact pairwise hydrodynamic theory is developed for the flow-induced spatial distribution of particles in dilute polydisperse suspensions undergoing two-dimensional unidirectional flows, including shear and planar Poiseuille flows. Coupled diffusive fluxes and a drift velocity are extracted from a Boltzmann-like master equation. A boundary layer is predicted in regions where the shear rate vanishes with thickness set by the radii of the upstream collision cross-sections for pair interactions. An analysis of this region yields linearly vanishing drift velocities and non-vanishing diffusivities where the shear rate vanishes, thus circumventing the source of the singular particle distribution predicted by the usual models. Outside of the boundary layer, a power-law particle distribution is predicted with exponent equal to minus half the exponent of the local shear rate. Trajectories for particles with symmetry-breaking contact interactions (e.g. rough particles, permeable particles, emulsion drops) are analytically integrated to yield particle displacements given by quadratures of hard-sphere (or spherical drop) mobility functions. Using this analysis, stationary particle distributions are obtained for suspensions in Poiseuille flow. The scale for the particle distribution in monodisperse suspensions is set by the collision cross-section of the particles but its shape is almost universal. Results for polydisperse suspensions show size segregation in the central boundary layer with enrichment of smaller particles. Particle densities at the centreline scale approximately with the inverse square root of particle size. A superposition approximation reliably predicts the exact results over a broad range of parameters. The predictions agree with experiments in suspensions up to approximately 20 % volume fraction without fitting parameters. 
    more » « less
  5. Particle dynamics simulations are used to determine the shear-induced microstructure and rheology of jammed suspensions of soft particles. These suspensions, known as soft particle glasses (SPGs), have an amorphous structure at rest but transform into ordered phases in strong shear flow when the particle size distribution is relatively monodisperse. Here, a series of bidisperse SPGs with different particle radii and number density ratios are considered, and their shear-induced phase diagrams are correlated with the macroscopic rheology at different shear rates and volume fractions. These shear-induced phase diagrams reveal that a combination of these parameters can lead to the emergence of various microstructures such as amorphous, layered, crystals, and in some cases, coexistence of amorphous and ordered phases. The evolution of the shear stress is correlated with the change in the microstructure and is a shear-activated process. Stress shows pseudo-steady behavior during an induction period before the final microstructural change leading to the formation of ordered structures. The outcomes provide a promising method to control the phase behavior of soft suspensions and build new self-assembled microstructures. 
    more » « less