Dense suspensions of particles in viscous liquid often demonstrate the striking phenomenon of abrupt shear thickening, where their viscosity increases strongly with increase of the imposed stress or shear rate. In this work, discrete-particle simulations accounting for short-range hydrodynamic, repulsive, and contact forces are performed to simulate flow of shear thickening bidisperse suspensions, with the packing parameters of large-to-small particle radius ratio δ = 3 and large particle fraction ζ = 0.15, 0.50, and 0.85. The simulations are carried out for volume fractions 0.54 ≤ ϕ ≤ 0.60 and a wide range of shear stresses. The repulsive forces, of magnitude F R , model the effects of surface charge and electric double-layer overlap, and result in shear thinning at small stress, with shear thickening beginning at stresses σ ∼ F R a −2 . A crossover scaling analysis used to describe systems with more than one thermodynamic critical point has recently been shown to successfully describe the experimentally-observed shear thickening behavior in suspensions. The scaling theory is tested here on simulated shear thickening data of the bidisperse mixtures, and also on nearly monodisperse suspensions with δ = 1.4 and ζ = 0.50. Presenting the viscosity in terms of a universal crossover scaling function between the frictionless and frictional maximum packing fractions collapses the viscosity for most of the suspensions studied. Two scaling regimes having different exponents are observed. The scaling analysis shows that the second normal stress difference N 2 and the particle pressure Π also collapse on their respective curves, with the latter featuring a different exponent from the viscosity and normal stress difference. The influence of the fraction of frictional contacts, one of the parameters of the scaling analysis, and its dependence on the packing parameters are also presented.
more »
« less
A pairwise hydrodynamic theory for flow-induced particle transport in shear and pressure-driven flows
An exact pairwise hydrodynamic theory is developed for the flow-induced spatial distribution of particles in dilute polydisperse suspensions undergoing two-dimensional unidirectional flows, including shear and planar Poiseuille flows. Coupled diffusive fluxes and a drift velocity are extracted from a Boltzmann-like master equation. A boundary layer is predicted in regions where the shear rate vanishes with thickness set by the radii of the upstream collision cross-sections for pair interactions. An analysis of this region yields linearly vanishing drift velocities and non-vanishing diffusivities where the shear rate vanishes, thus circumventing the source of the singular particle distribution predicted by the usual models. Outside of the boundary layer, a power-law particle distribution is predicted with exponent equal to minus half the exponent of the local shear rate. Trajectories for particles with symmetry-breaking contact interactions (e.g. rough particles, permeable particles, emulsion drops) are analytically integrated to yield particle displacements given by quadratures of hard-sphere (or spherical drop) mobility functions. Using this analysis, stationary particle distributions are obtained for suspensions in Poiseuille flow. The scale for the particle distribution in monodisperse suspensions is set by the collision cross-section of the particles but its shape is almost universal. Results for polydisperse suspensions show size segregation in the central boundary layer with enrichment of smaller particles. Particle densities at the centreline scale approximately with the inverse square root of particle size. A superposition approximation reliably predicts the exact results over a broad range of parameters. The predictions agree with experiments in suspensions up to approximately 20 % volume fraction without fitting parameters.
more »
« less
- Award ID(s):
- 1603806
- PAR ID:
- 10558306
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 952
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electrical transport in semiconducting and metallic particle suspensions is an enabling feature of emerging grid-scale battery technologies. Although the physics of the transport process plays a key role in these technologies, no universal framework has yet emerged. Here, we examine the important contribution of shear flow to the electrical transport of non-Brownian suspensions. We find that these suspensions exhibit a strong dependence of the transport rate on the particle volume fraction and applied shear rate, which enables the conductivity to be dynamically changed by over 10 7 decades based on the applied shear rate. We combine experiments and simulations to conclude that the transport process relies on a combination of charge and particle diffusion with a rate that can be predicted using a quantitative physical model that incorporates the self-diffusion of the particles.more » « less
-
At low Reynolds numbers, axisymmetric ellipsoidal particles immersed in a shear flow undergo periodic tumbling motions known as Jeffery orbits, with the orbit determined by the initial orientation. Understanding this motion is important for predicting the overall dynamics of a suspension. While slender fibres may follow Jeffery orbits, many such particles in nature are neither straight nor rigid. Recent work exploring the dynamics of curved or elastic fibres have found Jeffery-like behaviour along with chaotic orbits, decaying orbital constants and cross-streamline drift. Most work focuses on particles with reflectional symmetry; we instead consider the behaviour of a composite asymmetric slender body made of two straight rods, suspended in a two-dimensional shear flow, to understand the effects of the shape on the dynamics. We find that for certain geometries the particle does not rotate and undergoes persistent drift across streamlines, the magnitude of which is consistent with other previously identified forms of cross-streamline drift. For this class of particles, such geometry-driven cross-streamline motion may be important in giving rise to dispersion in channel flows, thereby potentially enhancing mixing.more » « less
-
The rheology of suspensions of rings (tori) rotating in an unbounded low Reynolds number simple shear flow is calculated using numerical simulations at dilute particle number densities ( n ≪ 1 ). Suspensions of non-Brownian rings are studied by computing pair interactions that include hydrodynamic interactions modeled using slender body theory and particle collisions modeled using a short-range repulsive force. Particle contact and hydrodynamic interactions were found to have comparable influences on the steady-state Jeffery orbit distribution. The average tilt of the ring away from the flow-vorticity plane increased during pairwise interactions compared to the tilt associated with Jeffery rotation and the steady-state orbit distribution. Particle stresses associated with the increased tilt during the interaction were found to be comparable to the stresses induced directly by particle contact forces and the hydrodynamic velocity disturbances of other particles. The hydrodynamic diffusivity coefficients in the gradient and vorticity directions were also obtained and were found to be two orders of magnitude larger than the corresponding values in fiber suspensions at the same particle concentrations. Rotary Brownian dynamics simulations of isolated Brownian rings were used to understand the shear rate dependence of suspension rheology. The orbit distribution observed in the regime of weak Brownian motion, P e ≫ ϕ T − 3, was surprisingly similar to that obtained from pairwise interaction calculations of non-Brownian rings. Here, the Peclet number P e is the ratio of the shear rate and the rotary diffusivity of the particle and ϕ T is the effective inverse-aspect ratio of the particle (approximately equal to 2 π times the inverse of its non-dimensional Jeffery time period). Thus, the rheology results obtained from pairwise interactions should retain accuracy even for weakly Brownian rings ( n ≪ 1 and ϕ T − 3 ≪ P e ).more » « less
-
Shear flows cause aspherical colloidal particles to tumble so that their orientations trace out complex trajectories known as Jeffery orbits. The Jeffery orbit of a prolate ellipsoid is predicted to align the particle's principal axis preferentially in the plane transverse to the axis of shear. Holographic microscopy measurements reveal instead that colloidal ellipsoids' trajectories in Poiseuille flows strongly favor an orientation inclined by roughly 𝜋/8 relative to this plane. This anomalous observation is consistent with at least two previous reports of colloidal rods and dimers of colloidal spheres in Poiseuille flow and therefore appears to be a generic, yet unexplained feature of colloidal transport at low Reynolds numbers.more » « less
An official website of the United States government

