skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Retroactive Identification of Targeted DNS Infrastructure Hijacking
In 2019, the US Department of Homeland Security issued an emergency warning about DNS infrastructure tampering. This alert, in response to a series of attacks against foreign government websites, highlighted how a sophisticated attacker could leverage access to key DNS infrastructure to then hijack traffic and harvest valid login credentials for target organizations. However, even armed with this knowledge, identifying the existence of such incidents has been almost entirely via post hoc forensic reports (i.e., after a breach was found via some other method). Indeed, such attacks are particularly challenging to detect because they can be very short lived, bypass the protections of TLS and DNSSEC, and are imperceptible to users. Identifying them retroactively is even more complicated by the lack of fine-grained Internet-scale forensic data. This paper is a first attempt to make progress at this latter goal. Combining a range of longitudinal data from Internet-wide scans, passive DNS records, and Certificate Transparency logs, we have constructed a methodology for identifying potential victims of sophisticated DNS infrastructure hijacking and have used it to identify a range of victims (primarily government agencies), both those named in prior reporting, and others previously unknown.  more » « less
Award ID(s):
2152644
PAR ID:
10417831
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 22nd ACM Internet Measurement Conference
Page Range / eLocation ID:
14 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Domain name system (DNS) resolves the IP addresses of domain names and is critical for IP networking. Recent denial-of-service (DoS) attacks on the Internet targeted the DNS system (e.g., Dyn), which has the cascading effect of denying the availability of the services and applications relying on the targeted DNS. In view of these attacks, we investigate the DoS on the DNS system and introduce the query-crafting threats where the attacker controls the DNS query payload (the domain name) to maximize the threat impact per query (increasing the communications between the DNS servers and the threat time duration), which is orthogonal to other DoS approaches to increase the attack impact such as flooding and DNS amplification. We model the DNS system using a state diagram and comprehensively analyze the threat space, identifying the threat vectors which include not only the random/invalid domains but also those using the domain name structure to combine valid strings and random strings. Query-crafting DoS threats generate new domain-name payloads for each query and force increased complexity in the DNS query resolution. We test the query-crafting DoS threats by taking empirical measurements on the Internet and show that they amplify the DoS impact on the DNS system (recursive resolver) by involving more communications and taking greater time duration. To defend against such DoS or DDoS threats, we identify the relevant detection features specific to query-crafting threats and evaluate the defense using our prototype in CloudLab. 
    more » « less
  2. Distributed Denial-of-Service (DDoS) attacks exhaust resources, leaving a server unavailable to legitimate clients. The Domain Name System (DNS) is a frequent target of DDoS attacks. Since DNS is a critical infrastructure service, protecting it from DoS is imperative. Many prior approaches have focused on specific filters or anti-spoofing techniques to protect generic services. DNS root nameservers are more challenging to protect, since they use fixed IP addresses, serve very diverse clients and requests, receive predominantly UDP traffic that can be spoofed, and must guarantee high quality of service. In this paper we propose a layered DDoS defense for DNS root nameservers. Our defense uses a library of defensive filters, which can be optimized for different attack types, with different levels of selectivity. We further propose a method that automatically and continuously evaluates and selects the best combination of filters throughout the attack. We show that this layered defense approach provides exceptional protection against all attack types using traces of ten real attacks from a DNS root nameserver. Our automated system can select the best defense within seconds and quickly reduces traffic to the server within a manageable range, while keeping collateral damage lower than 2%. We can handle millions of filtering rules without noticeable operational overhead. 
    more » « less
  3. Distributed Denial-of-Service (DDoS) attacks exhaust resources, leaving a server unavailable to legitimate clients. The Domain Name System (DNS) is a frequent target of DDoS attacks. Since DNS is a critical infrastructure service, protecting it from DoS is imperative. Many prior approaches have focused on specific filters or anti-spoofing techniques to protect generic services. DNS root nameservers are more challenging to protect, since they use fixed IP addresses, serve very diverse clients and requests, receive predominantly UDP traffic that can be spoofed, and must guarantee high quality of service. In this paper we propose a layered DDoS defense for DNS root nameservers. Our defense uses a library of defensive filters, which can be optimized for different attack types, with different levels of selectivity. We further propose a method that automatically and continuously evaluates and selects the best combination of filters throughout the attack. We show that this layered defense approach provides exceptional protection against all attack types using traces of ten real attacks from a DNS root nameserver. Our automated system can select the best defense within seconds and quickly reduces traffic to the server within a manageable range, while keeping collateral damage lower than 2%. We show our system can successfully mitigate resource exhaustion using replay of a real-world attack. We can handle millions of filtering rules without noticeable operational overhead. 
    more » « less
  4. Smartphones are the most commonly used computing platform for accessing sensitive and important information placed on the Internet. Authenticating the smartphone's identity in addition to the user's identity is a widely adopted security augmentation method since conventional user authentication methods, such as password entry, often fail to provide strong protection by itself. In this paper, we propose a sensor-based device fingerprinting technique for identifying and authenticating individual mobile devices. Our technique, called MicPrint, exploits the unique characteristics of embedded microphones in mobile devices due to manufacturing variations in order to uniquely identify each device. Unlike conventional sensor-based device fingerprinting that are prone to spoofing attack via malware, MicPrint is fundamentally spoof-resistant since it uses acoustic features that are prominent only when the user blocks the microphone hole. This simple user intervention acts as implicit permission to fingerprint the sensor and can effectively prevent unauthorized fingerprinting using malware. We implement MicPrint on Google Pixel 1 and Samsung Nexus to evaluate the accuracy of device identification. We also evaluate its security against simple raw data attacks and sophisticated impersonation attacks. The results show that after several incremental training cycles under various environmental noises, MicPrint can achieve high accuracy and reliability for both smartphone models. 
    more » « less
  5. —Infrastructure-as-a-Service (IaaS), and more generally the “cloud,” like Amazon Web Services (AWS) or Microsoft Azure, have changed the landscape of system operations on the Internet. Their elasticity allows operators to rapidly allocate and use resources as needed, from virtual machines, to storage, to bandwidth, and even to IP addresses, which is what made them popular and spurred innovation. In this paper, we show that the dynamic component paired with recent developments in trust-based ecosystems (e.g., SSL certificates) creates so far unknown attack vectors. Specifically, we discover a substantial number of stale DNS records that point to available IP addresses in clouds, yet, are still actively attempted to be accessed. Often, these records belong to discontinued services that were previously hosted in the cloud. We demonstrate that it is practical, and time and cost efficient for attackers to allocate IP addresses to which stale DNS records point. Considering the ubiquity of domain validation in trust ecosystems, like SSL certificates, an attacker can impersonate the service using a valid certificate trusted by all major operating systems and browsers. The attacker can then also exploit residual trust in the domain name for phishing, receiving and sending emails, or possibly distribute code to clients that load remote code from the domain (e.g., loading of native code by mobile apps, or JavaScript libraries by websites). Even worse, an aggressive attacker could execute the attack in less than 70 seconds, well below common time-to-live (TTL) for DNS records. In turn, it means an attacker could exploit normal service migrations in the cloud to obtain a valid SSL certificate for domains owned and managed by others, and, worse, that she might not actually be bound by DNS records being (temporarily) stale, but that she can exploit caching instead. We introduce a new authentication method for trust-based domain validation that mitigates staleness issues without incurring additional certificate requester effort by incorporating existing trust of a name into the validation process. Furthermore, we provide recommendations for domain name owners and cloud operators to reduce their and their clients’ exposure to DNS staleness issues and the resulting domain takeover attacks. 
    more » « less