Distributed Denial-of-Service (DDoS) attacks exhaust resources, leaving a server unavailable to legitimate clients. The Domain Name System (DNS) is a frequent target of DDoS attacks. Since DNS is a critical infrastructure service, protecting it from DoS is imperative. Many prior approaches have focused on specific filters or anti-spoofing techniques to protect generic services. DNS root nameservers are more challenging to protect, since they use fixed IP addresses, serve very diverse clients and requests, receive predominantly UDP traffic that can be spoofed, and must guarantee high quality of service. In this paper we propose a layered DDoS defense for DNS root nameservers. Our defense uses a library of defensive filters, which can be optimized for different attack types, with different levels of selectivity. We further propose a method that automatically and continuously evaluates and selects the best combination of filters throughout the attack. We show that this layered defense approach provides exceptional protection against all attack types using traces of ten real attacks from a DNS root nameserver. Our automated system can select the best defense within seconds and quickly reduces traffic to the server within a manageable range, while keeping collateral damage lower than 2%. We show our system can successfully mitigate resource exhaustion using replay of a real-world attack. We can handle millions of filtering rules without noticeable operational overhead. 
                        more » 
                        « less   
                    
                            
                            Defending Root DNS Servers Against DDoS Using Layered Defenses
                        
                    
    
            Distributed Denial-of-Service (DDoS) attacks exhaust resources, leaving a server unavailable to legitimate clients. The Domain Name System (DNS) is a frequent target of DDoS attacks. Since DNS is a critical infrastructure service, protecting it from DoS is imperative. Many prior approaches have focused on specific filters or anti-spoofing techniques to protect generic services. DNS root nameservers are more challenging to protect, since they use fixed IP addresses, serve very diverse clients and requests, receive predominantly UDP traffic that can be spoofed, and must guarantee high quality of service. In this paper we propose a layered DDoS defense for DNS root nameservers. Our defense uses a library of defensive filters, which can be optimized for different attack types, with different levels of selectivity. We further propose a method that automatically and continuously evaluates and selects the best combination of filters throughout the attack. We show that this layered defense approach provides exceptional protection against all attack types using traces of ten real attacks from a DNS root nameserver. Our automated system can select the best defense within seconds and quickly reduces traffic to the server within a manageable range, while keeping collateral damage lower than 2%. We can handle millions of filtering rules without noticeable operational overhead. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2120400
- PAR ID:
- 10470503
- Publisher / Repository:
- Proceedings of COMSNETS 2023
- Date Published:
- Format(s):
- Medium: X
- Location:
- Bangalore, India
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Software-Defined Networking (SDN) is a dynamic, and manageable network architecture which is more cost-effective than existing network architectures. The idea behind this architecture is to centralize intelligence from the network hardware and funnel this intelligence to the management system (controller) [2]-[4]. Since the centralized SDN controller controls the entire network and manages policies and the flow of the traffic throughout the network, it can be considered as the single point of failure [1]. It is important to find some ways to identify different types of attacks on the SDN controller [8]. Distributed Denial of Service (DDoS) attack is one of the most dangerous attacks on SDN controller. In this work, we implement DDoS attack on the Ryu controller in a tree network topology using Mininet emulator. Also, we use a machine learning method, Vector Machines (SVM) to detect DDoS attack. We propose to install flows in switches, and we consider time attack pattern of the DDoS attack for detection. Simulation results show the effects of DDoS attacks on the Ryu controller is reduced by 36% using our detection method.more » « less
- 
            A Distributed Denial of Service (DDoS) attack is an attempt to make an online service, a network, or even an entire organization, unavailable by saturating it with traffic from multiple sources. DDoS attacks are among the most common and most devastating threats that network defenders have to watch out for. DDoS attacks are becoming bigger, more frequent, and more sophisticated. Volumetric attacks are the most common types of DDoS attacks. A DDoS attack is considered volumetric, or high-rate, when within a short period of time it generates a large amount of packets or a high volume of traffic. High-rate attacks are well-known and have received much attention in the past decade; however, despite several detection and mitigation strategies have been designed and implemented, high-rate attacks are still halting the normal operation of information technology infrastructures across the Internet when the protection mechanisms are not able to cope with the aggregated capacity that the perpetrators have put together. With this in mind, the present paper aims to propose and test a distributed and collaborative architecture for online high-rate DDoS attack detection and mitigation based on an in-memory distributed graph data structure and unsupervised machine learning algorithms that leverage real-time streaming data and analytics. We have successfully tested our proposed mechanism using a real-world DDoS attack dataset at its original rate in pursuance of reproducing the conditions of an actual large scale attack.more » « less
- 
            IP anycast is used for services such as DNS and Content Delivery Networks (CDN) to provide the capacity to handle Distributed Denial-of-Service (DDoS) attacks. During a DDoS attack service operators redistribute traffic between anycast sites to take advantage of sites with unused or greater capacity. Depending on site traffic and attack size, operators may instead concentrate attackers in a few sites to preserve operation in others. Operators use these actions during attacks, but how to do so has not been described systematically or publicly. This paper describes several methods to use BGP to shift traffic when under DDoS, and shows that a \emph{response playbook} can provide a menu of responses that are options during an attack. To choose an appropriate response from this playbook, we also describe a new method to estimate true attack size, even though the operator's view during the attack is incomplete. Finally, operator choices are constrained by distributed routing policies, and not all are helpful. We explore how specific anycast deployment can constrain options in this playbook, and are the first to measure how generally applicable they are across multiple anycast networks.more » « less
- 
            As increasingly complex and dynamic volumetric DDoS attacks continue to wreak havoc on edge networks, two recent developments promise to bolster DDoS defense at the edge. First, programmable switches have emerged as promising means for achieving scalable and cost-effective attack signature detection. However, their practical application in edge networks remains a challenging open problem. Second, machine learning (ML)-based solutions have demonstrated potential in accurately detecting attack signatures based on per-flow traffic features. Yet, their inability to effectively scale to the traffic volumes and number of flows in actual production edge networks has largely excluded them from practical considerations.In this paper, we introduce ZAPDOS, a novel approach to accurately, quickly, and scalably detect volumetric DDoS attack signatures at the source prefix level. ZAPDOS is the first to utilize a key characteristic of the observed structure of measured attack and benign source prefixes (i.e., a pronounced cluster-within-cluster property) and effectively apply it in practice against modern attacks. ZAPDOS operates by monitoring aggregate prefix-level features in switch hardware, employing a learning model to identify prefixes suspected of containing attack sources, and using several innovative algorithmic methods to pinpoint attack sources efficiently. We have built a hardware prototype of ZAPDOS and a packet-level software simulator which achieves comparable accuracy results. Since existing datasets are inadequate for training and evaluating prefix-level models, we have developed a new data-fusion methodology for training and evaluating ZAPDOS. We use our prototype and simulator to show that ZAPDOS can detect volumetric DDoS attack signatures with orders of magnitude lower error rates than state-of-the-art under comparable monitoring resource budgets and for a range of different attack scenarios.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    