skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shaping of topography by topographically-controlled vegetation in tropical montane rainforest
Topography is commonly viewed as a passive backdrop on which vegetation grows. Yet, in certain circumstances, a bidirectional feedback may develop between the control of topography and the spatial distribution of vegetation and landform development, because vegetation modulates the erosion of the land surface. Therefore, if reinforcing feedbacks are established between erosion and land cover distribution over timescales relevant to landform development, then the interactions between vegetation and topography may create distinctive landforms, shaped by vegetation. We expose here a strong correlation between the spatial distribution of vegetation, erosion rates, and topography at a characteristic length scale of 10 2 -10 3 m (mesoscale topography) in the Luquillo Experimental forest (LEF) of Puerto Rico. We use high-resolution LiDAR topography to characterize landforms, satellite images to classify the vegetation into forest types, and in-situ produced cosmogenic 10 Be in the quartz extracted from soils and stream sediments to document spatial variations in soil erosion. The data document a strong correlation between forest type and topographic position (hilltop vs. valleys), and a correlation between topographic position and 10 Be-derived erosion rates over 10 3 −10 4 years. Erosion is faster in valleys, which are mostly covered by monocot Palm Forest, and slower on surrounding hills mostly covered by the dicot Palo Colorado Forest. Transition from one forest type to the next occurs across a break-in-slope that separates shallowly convex hilltops from deeply concave valleys (coves). The break-in-slope is the consequence of a longer-lasting erosional imbalance whereby coves erode faster than hills over landscape-shaping timescales. Such a deepening of the coves is usually spurred by external drivers, but such drivers are here absent. This implies that cove erosion is driven by a process originating within the coves themselves. We propose that vegetation is the primary driver of this imbalance, soil erosion being faster under Palm forest than under Palo Colorado forest. Concentration of the Palm forest in the deepening coves is reinforced by the better adaptation of Palm trees to the erosive processes that take place in the coves, once these develop steep slopes. At the current rate of landscape development, we find that the imbalance started within the past 0.1–1.5 My. The initiation of the process could correspond to time of settlement of these mountain slopes by the Palm and Palo Colorado forests.  more » « less
Award ID(s):
2104111 1831952
PAR ID:
10417853
Author(s) / Creator(s):
; ;
Editor(s):
Van Stan, John Toland
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
3
ISSN:
1932-6203
Page Range / eLocation ID:
e0281835
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Biodiversity at larger spatial scales (γ) can be driven by within‐site partitions (α), with little variation in composition among locations, or can be driven by among‐site partitions (β) that signal the importance of spatial heterogeneity. For tropical elevational gradients, we determined the (a) extent to which variation in γ is driven by α‐ or β‐partitions; (b) elevational form of the relationship for each partition; and (c) extent to which elevational gradients are molded by zonation in vegetation or by gradual variation in climatic or abiotic characteristics. We sampled terrestrial gastropods along two transects in the Luquillo Mountains. One passed through multiple vegetation zones (tabonuco, palo colorado, and elfin forests), and one passed through only palm forest. We quantified variation in hierarchical partitions (α, β, and γ) of species richness, evenness, diversity, and dominance, as well as in the content and quality of litter. Total gastropod abundance linearly decreased with increasing elevation along both transects, but was consistently higher in palm than in other forest types. The gradual linear decline in γ‐richness was a consequence of opposing patterns with regard to α‐richness (monotonic decrease) and β‐richness (monotonic increase). For evenness, diversity, and dominance, α‐partitions and γ‐partitions evinced mid‐elevational peaks. The spatial organization of gastropod biodiversity did not mirror the zonation of vegetation. Rather, it was molded by: (a) elevational variation in productivity or nutrient characteristics, (b) the interspersion of palm forest within other forest types, and (c) the cloud condensation point acting as a transition between low and high elevation faunas. Abstract in Spanish is available with online material. 
    more » « less
  2. Abstract Steep landscapes evolve largely by debris flows, in addition to fluvial and hillslope processes. Abundant field observations document that debris flows incise valley bottoms and transport substantial sediment volumes, yet their contributions to steepland morphology remain uncertain. This has, in turn, limited the development of debris‐flow incision rate formulations that produce morphology consistent with natural landscapes. In many landscapes, including the San Gabriel Mountains (SGM), California, steady‐state fluvial channel longitudinal profiles are concave‐up and exhibit a power‐law relationship between channel slope and drainage area. At low drainage areas, however, valley slopes become nearly constant. These topographic forms result in a characteristically curved slope‐area signature in log‐log space. Here, we use a one‐dimensional landform evolution model that incorporates debris‐flow erosion to reproduce the relationship between this curved slope‐area signature and erosion rate in the SGM. Topographic analysis indicates that the drainage area at which steepland valleys transition to fluvial channels correlates with measured erosion rates in the SGM, and our model results reproduce these relationships. Further, the model only produces realistic valley profiles when parameters that dictate the relationship between debris‐flow erosion, valley‐bottom slope, and debris‐flow depth are within a narrow range. This result helps place constraints on the mathematical form of a debris‐flow incision law. Finally, modeled fluvial incision outpaces debris‐flow erosion at drainage areas less than those at which valleys morphologically transition from near‐invariant slopes to concave profiles. This result emphasizes the critical role of debris‐flow incision for setting steepland form, even as fluvial incision becomes the dominant incisional process. 
    more » « less
  3. Off-road vehicle mobility assessments rely on fine-resolution (~10 m) estimates of soil moisture and strength across the region of interest. Such estimates are often produced by downscaling soil moisture from a microwave satellite like SMAP, then using the soil moisture in a soil strength model. Soil moisture downscaling methods typically assume consistent relationships between the moisture and topographic, vegetation, and soil composition characteristics within the microwave satellite grid cells. The objective of this study is to examine whether soil moisture and strength exhibit heterogenous dependencies on topography, vegetation, and soil composition characteristics within a SMAP grid cell. Soil moisture and strength data were collected at four geographically separated regions within a 9 km SMAP grid cell in the Front Range foothills of northern Colorado. Laboratory methods and pedotransfer functions were used to characterize soil attributes, and remote sensing data were used to determine topographic and vegetation attributes. Pearson correlation analyses were used to quantify the direction, strength, and significance of the relationships of both soil moisture and strength with topography, vegetation, and soil composition. Contrary to the common assumption, spatial variations in the slope and correlation of the relationships are observed for both soil moisture and strength. The findings indicate that improved predictions of soil moisture and soil strength may be achievable by soil moisture downscaling procedures that use spatially variable parameters across the downscaling extent. 
    more » « less
  4. Abstract Current understanding of the distribution of vegetation and large mammalian herbivores (LMH) is based on a combination of biogeographic studies and highly controlled field experiments, but a more complete understanding of these patterns requires study of their natural co‐occurrence patterns at intermediate spatial scales. The study was conducted in the 120‐ha Mpala Forest Global Earth Observatory (ForestGEO) plot, Kenya. We examined differences in herbaceous plant communities and habitat use by LMH among three topographic habitats with distinct soil types, namely steep slopes, valley and plateau. Each pair of habitats differed in plant and animal composition. The steep slopes and plateau respectively had ≥1‐fold higher percentage herbaceous cover than the valley, whereas the steep slopes and valley had >1.5‐fold greater grass species richness and diversity than the plateau. The activity of LMH was ≥1.7‐fold higher in the valley than the steep slopes and plateau, reflecting a positive relationship between LMH activity index and richness and diversity of grass species. Results indicate that fine‐scale variation in topography and soil are associated with both the distribution of herbaceous vegetation and LMH, suggesting a need to account for local habitat characteristics when examining the distributions of plants, animals, and plant‐herbivore interactions in natural systems. 
    more » « less
  5. Throughout communities and ecosystems both within and downstream of mountain forests, there is an increasing risk of wildfire. After a wildfire, stakeholder management will vary depending on the rate and spatial heterogeneity of forest re-establishment. However, forest re-establishment and recovery after a wildfire is closely linked to interactions between the temporal evolution of plant-available water (PAW) and spatial patterns in available energy. Therefore, we propose a conceptual model that describes spatial heterogeneity in long-term watershed recovery rate as a function of topographically-mediated interactions between available energy and the movement of water in the subsurface (i.e. subsurface hydrologic redistribution). As vegetation becomes re-established across a burned landscape in response to topographic and subsurface controls on water and energy, canopies shade the ground surface and reduce wind speed creating positive feedbacks that increase PAW. Furthermore, slope aspect differentially impacts the spatial patterns in regrowth and re-establishment. South aspect slopes receive high solar radiation, and consequently are warmer and drier, with lower standing biomass and greater drought stress and mortality compared to north aspect slopes. To date, most assessments of these impacts have taken a bulk approach, or an implicitly one-dimensional conceptual approach that does not include spatial heterogeneity in hydroclimate influenced by topography and vegetation. The presented conceptual model sets a starting point to further our understanding of the spatio-temporal evolution of PAW storage, energy availability, and vegetation re-establishment and survival in forested catchments after a wildfire. The model also provides a template for collaboration with diverse stakeholders to aid the co-production of next generation management tools to mitigate the negative impacts of future wildfires. 
    more » « less