skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revisiting trends in the exchange current for hydrogen evolution
Nørskov and collaborators proposed a simple kinetic model to explain the volcano relation for the hydrogen evolution reaction on transition metal surfaces such that j 0 = k 0 f (Δ G H ) where j 0 is the exchange current density, f (Δ G H ) is a function of the hydrogen adsorption free energy Δ G H as computed from density functional theory, and k 0 is a universal rate constant. Herein, focusing on the hydrogen evolution reaction in acidic medium, we revisit the original experimental data and find that the fidelity of this kinetic model can be significantly improved by invoking metal-dependence on k 0 such that the logarithm of k 0 linearly depends on the absolute value of Δ G H . We further confirm this relationship using additional experimental data points obtained from a critical review of the available literature. Our analyses show that the new model decreases the discrepancy between calculated and experimental exchange current density values by up to four orders of magnitude. Furthermore, we show the model can be further improved using machine learning and statistical inference methods that integrate additional material properties.  more » « less
Award ID(s):
1809085
PAR ID:
10417862
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Catalysis Science & Technology
Volume:
11
Issue:
20
ISSN:
2044-4753
Page Range / eLocation ID:
6832 to 6838
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Solid‐state electrocatalysis plays a crucial role in the development of renewable energy to reshape current and future energy needs. However, finding an inexpensive and highly active catalyst to replace precious metals remains a big challenge for this technology. Here, tri‐molybdenum phosphide (Mo3P) is found as a promising nonprecious metal and earth‐abundant candidate with outstanding catalytic properties that can be used for electrocatalytic processes. The catalytic performance of Mo3P nanoparticles is tested in the hydrogen evolution reaction (HER). The results indicate an onset potential of as low as 21 mV, H2formation rate, and exchange current density of 214.7 µmol s−1g−1cat(at only 100 mV overpotential) and 279.07 µA cm−2, respectively, which are among the closest values yet observed to platinum. Combined atomic‐scale characterizations and computational studies confirm that high density of molybdenum (Mo) active sites at the surface with superior intrinsic electronic properties are mainly responsible for the remarkable HER performance. The density functional theory calculation results also confirm that the exceptional performance of Mo3P is due to neutral Gibbs free energy (ΔGH*) of the hydrogen (H) adsorption at above 1/2 monolayer (ML) coverage of the (110) surface, exceeding the performance of existing non‐noble metal catalysts for HER. 
    more » « less
  2. Kinetic parameters have been estimated for the H2– D2 exchange reaction on a thin film Pd catalyst by fitting reaction data from T = 333 to 593 K over a range of inlet partial pressures, Pin H2 and Pin D2 . A rigorous approach to estimating the 95% confidence regions of the kinetic parameters reveals some of the issues and complexities that are not routinely considered in the estimation of kinetic parameter uncertainty from catalytic data. Three different mechanistic models were used to assess the influence of subsurface hydrogen, H′: the traditional Langmuir–Hinshelwood (LH) mechanism, the Single Subsurface Hydrogen (1H′) mechanism, and the Dual Subsurface Hydrogen (2H′) mechanism. The fitting was performed by fixing the preexponential factors for all Arrhenius rate constants and equilibrium constants to their transition state theory values. The diffusion of H and D atoms from the surface into the subsurface was constrained to be endothermic (i.e. ΔE ss > 0) and represented as an equilibrium process. Performance of the fitting routine was evaluated on a noiseless simulated dataset (created using ΔE‡ ads = 0, ΔE‡ des = 43, and ΔE ss = 25 kJ/mol) and the same simulated dataset with the inclusion of 3% Gaussian noise. In both cases, the solver was able to return the chosen values of ΔE‡ ads , ΔE‡ des , and ΔE ss . Mapping of the behavior of the residual sum of squared errors, 2 , about its global minimum within 3D ( ads , des , ss ) parameter space allowed quantification and visualization of the 95% confidence regions using 2D error ellipses for each pair of fitting parameters. For the experimental dataset on the Pd catalyst, fitting to the LH model predicted that H2– D2 exchange is adsorption rate limited, with ΔE‡ ads = 51.1 ± 0.6 kJ/mol with 95% confidence. On the other hand, fitting to both the 1H′ and 2H′ models led to predictions of ΔE‡ ads = 0, consistent with the current understanding that the barrier to H2 dissociation on Pd is low. Thus, the results detailed herein provide supporting evidence for a non-LH mechanism for H2– D2 exchange on Pd while also illustrating the issues associated with quantification of uncertainty in kinetic parameter estimation. 
    more » « less
  3. null (Ed.)
    By coupling a newly developed quantum-electronic-state-selected supersonically cooled vanadium cation (V + ) beam source with a double quadrupole-double octopole (DQDO) ion–molecule reaction apparatus, we have investigated detailed absolute integral cross sections ( σ 's) for the reactions, V + [a 5 D J ( J = 0, 2), a 5 F J ( J = 1, 2), and a 3 F J ( J = 2, 3)] + CH 4 , covering the center-of-mass collision energy range of E cm = 0.1–10.0 eV. Three product channels, VH + + CH 3 , VCH 2 + + H 2 , and VCH 3 + + H, are unambiguously identified based on E cm -threshold measurements. No J -dependences for the σ curves ( σ versus E cm plots) of individual electronic states are discernible, which may indicate that the spin–orbit coupling is weak and has little effect on chemical reactivity. For all three product channels, the maximum σ values for the triplet a 3 F J state [ σ (a 3 F J )] are found to be more than ten times larger than those for the quintet σ (a 5 D J ) and σ (a 5 F J ) states, showing that a reaction mechanism favoring the conservation of total electron spin. Without performing a detailed theoretical study, we have tentatively interpreted that a weak quintet-to-triplet spin crossing is operative for the activation reaction. The σ (a 5 D 0 , a 5 F 1 , and a 3 F 2) measurements for the VH + , VCH 2 + , and VCH 3 + product ion channels along with accounting of the kinetic energy distribution due to the thermal broadening effect for CH 4 have allowed the determination of the 0 K bond dissociation energies: D 0 (V + –H) = 2.02 (0.05) eV, D 0 (V + –CH 2 ) = 3.40 (0.07) eV, and D 0 (V + –CH 3 ) = 2.07 (0.09) eV. Detailed branching ratios of product ion channels for the titled reaction have also been reported. Excellent simulations of the σ curves obtained previously for V + generated by surface ionization at 1800–2200 K can be achieved by the linear combination of the σ (a 5 D J , a 5 F J , and a 3 F J ) curves weighted by the corresponding Boltzmann populations of the electronic states. In addition to serving as a strong validation of the thermal equilibrium assumption for the populations of the V + electronic states in the hot filament ionization source, the agreement between these results also confirmed that the V + (a 5 D J , a 5 F J , and a 3 F J ) states prepared in this experiment are in single spin–orbit states with 100% purity. 
    more » « less
  4. Abstract Cold H+produced via charge exchange reactions between ring current ions and exospheric neutral hydrogen constitutes an additional source of cold plasma that further contributes to the plasmasphere and affects the plasma dynamics in the Earth's magnetosphere system; however, its production and associated effects on the plasmasphere dynamics have not been fully assessed and quantified. In this study, we perform numerical simulations mimicking an idealized three‐phase geomagnetic storm to investigate the role of heavy ion composition in the ring current (O+vs. N+) and exospheric neutral hydrogen density in the production of cold H+via charge exchange reactions. It is found that ring current heavy ions produce more than 50% of the total cold H+via charge exchange reactions, and energetic N+is more efficient in producing cold H+via charge exchange reactions than O+. Furthermore, the density structure of the cold H+is highly dependent on the mass of the parent ion; that is, cold H+deriving from charge exchange reactions involving energetic O+with neutral hydrogen, populates the lower L‐shells, while cold H+deriving from charge exchange reactions involving energetic N+with neutral hydrogen populates the higher L‐shells. In addition, the density of cold H+produced via charge exchange reactions involving N+can be peak at values up to one order of magnitude larger than the local plasmaspheric density, suggesting that solely considering the supply of cold plasma from the ionosphere to the plasmasphere can lead to a significant underestimation of plasmasphere density. 
    more » « less
  5. Abstract Abundant transition metal borides are emerging as substitute electrochemical hydrogen evolution reaction (HER) catalysts for noble metals. Herein, an unusual canonic‐like behavior of theclattice parameter in the AlB2‐type solid solution Cr1–xMoxB2(x= 0, 0.25, 0.4, 0.5, 0.6, 0.75, 1) and its direct correlation to the HER activity in 0.5 M H2SO4solution are reported. The activity increases with increasingx, reaching its maximum atx= 0.6 before decreasing again. At high current densities, Cr0.4Mo0.6B2outperforms Pt/C, as it needs 180 mV less overpotential to drive an 800 mA cm−2current density. Cr0.4Mo0.6B2has excellent long‐term stability and durability showing no significant activity loss after 5000 cycles and 25 h of operation in acid. First‐principles calculations have correctly reproduced the nonlinear dependence of theclattice parameter and have shown that the mixed metal/B layers, such as (110), promote hydrogen evolution more efficiently forx= 0.6, supporting the experimental results. 
    more » « less