skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hodge sheaves underlying flat projective families
Abstract We show that, for any fixed weight, there is a natural system of Hodge sheaves, whose Higgs field has no poles, arising from a flat projective family of varieties parametrized by a regular complex base scheme, extending the analogous classical result for smooth projective families due to Griffiths. As an application, based on positivity of direct image sheaves, we establish a criterion for base spaces of rational Gorenstein families to be of general type. A key component of our arguments is centered around the construction of derived categorical objects generalizing relative logarithmic forms for smooth maps and their functorial properties.  more » « less
Award ID(s):
1951376 2100389
PAR ID:
10417962
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Mathematische Zeitschrift
Volume:
303
Issue:
3
ISSN:
0025-5874
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Belmans, Pieter; Ho, Wei; de_Jong, Aise Johan (Ed.)
    In this expository paper, we show that the Deligne–Mumford moduli space of stable curves is projective over Spec(Z). The proof we present is due to Kollár. Ampleness of a line bundle is deduced from the nefness of a related vector bundle via the ampleness lemma, a classifying map construction. The main positivity result concerns the pushforward of relative dualizing sheaves on families of stable curves over a smooth projective curve. 
    more » « less
  2. We show that a Fourier–Mukai equivalence between smooth projective varieties of characteristic that commutes with either pushforward or pullback along Frobenius is a composition of shifts, isomorphisms, and tensor products with invertible sheaves whose th tensor power is trivial. 
    more » « less
  3. We introduce a notion of complexity of a complex of ℓ \ell -adic sheaves on a quasi-projective variety and prove that the six operations are “continuous”, in the sense that the complexity of the output sheaves is bounded solely in terms of the complexity of the input sheaves. A key feature of complexity is that it provides bounds for the sum of Betti numbers that, in many interesting cases, can be made uniform in the characteristic of the base field. As an illustration, we discuss a few simple applications to horizontal equidistribution results for exponential sums over finite fields. 
    more » « less
  4. We categorify the inclusion–exclusion principle for partially ordered topological spaces and schemes to a filtration on the derived category of sheaves. As a consequence, we obtain functorial spectral sequences that generalize the two spectral sequences of a stratified space and certain Vassiliev-type spectral sequences; we also obtain Euler characteristic analogs in the Grothendieck ring of varieties. As an application, we give an algebro-geometric proof of Vakil and Wood's homological stability conjecture for the space of smooth hypersurface sections of a smooth projective variety. In characteristic zero this conjecture was previously established by Aumonier via topological methods. 
    more » « less
  5. Abstract We develop a Hodge theoretic invariant for families of projective manifolds that measures the potential failure of an Arakelov-type inequality in higher dimensions, one that naturally generalizes the classical Arakelov inequality over regular quasi-projective curves.We show that, for families of manifolds with ample canonical bundle, this invariant is uniformly bounded.As a consequence, we establish that such families over a base of arbitrary dimension satisfy the aforementioned Arakelov inequality, answering a question of Viehweg. 
    more » « less