Arakelov inequalities in higher dimensions
Abstract We develop a Hodge theoretic invariant for families of projective manifolds that measures the potential failure of an Arakelov-type inequality in higher dimensions, one that naturally generalizes the classical Arakelov inequality over regular quasi-projective curves.We show that, for families of manifolds with ample canonical bundle, this invariant is uniformly bounded.As a consequence, we establish that such families over a base of arbitrary dimension satisfy the aforementioned Arakelov inequality, answering a question of Viehweg.
more »
« less
- PAR ID:
- 10511474
- Publisher / Repository:
- De Gruyter
- Date Published:
- Journal Name:
- Journal für die reine und angewandte Mathematik (Crelles Journal)
- Volume:
- 0
- Issue:
- 0
- ISSN:
- 0075-4102
- Subject(s) / Keyword(s):
- Families of manifolds, flat families, variation of Hodge structures, Arakelov-type inequalities.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this paper, we show that the Turaev–Viro invariant volume conjecture posed by Chen and Yang is preserved under gluings of toroidal boundary components for a family of 3-manifolds. In particular, we show that the asymptotics of the Turaev–Viro invariants are additive under certain gluings of elementary pieces arising from a construction of hyperbolic cusped 3-manifolds due to Agol. The gluings of the elementary pieces are known to be additive with respect to the simplicial volume. This allows us to construct families of manifolds which have an arbitrary number of hyperbolic pieces and satisfy an extended version of the Turaev–Viro invariant volume conjecture.more » « less
-
We use Heegaard Floer homology to define an invariant of homology cobordism. This invariant is isomorphic to a summand of the reduced Heegaard Floer homology of a rational homology sphere equipped with a spin structure and is analogous to Stoffregen’s connected Seiberg–Witten Floer homology. We use this invariant to study the structure of the homology cobordism group and, along the way, compute the involutive correction terms $$\bar{d}$$ and $$\text{}\underline{d}$$ for certain families of three-manifolds.more » « less
-
Abstract In this paper, we investigate an arithmetic analogue of the gonality of a smooth projective curve $$C$$ over a number field $$k$$: the minimal $$e$$ such that there are infinitely many points $$P \in C(\bar{k})$$ with $$[k(P):k] \leqslant e$$. Developing techniques that make use of an auxiliary smooth surface containing the curve, we show that this invariant can take any value subject to constraints imposed by the gonality. Building on work of Debarre–Klassen, we show that this invariant is equal to the gonality for all sufficiently ample curves on a surface $$S$$ with trivial irregularity.more » « less
-
Abstract For a simple, simply connected complex affine algebraic group 𝐺, we prove the existence of a flat projective connection on the bundle of nonabelian theta functions on the moduli spaces of semistable parabolic 𝐺-bundles for families of smooth projective curves with marked points.more » « less
An official website of the United States government

