Abstract We construct a lift of the $$p$$-complete sphere to the universal height $$1$$ higher semiadditive stable $$\infty $$-category of Carmeli–Schlank–Yanovski, providing a counterexample, at height $$1$$, to their conjecture that the natural functor $$ _n \to \operatorname{\textrm{Sp}}_{T(n)}$$ is an equivalence. We then record some consequences of the construction, including an observation of Schlank that this gives a conceptual proof of a classical theorem of Lee on the stable cohomotopy of Eilenberg–MacLane spaces.
more »
« less
The Arinkin–Gaitsgory temperedness conjecture
Abstract Arinkin and Gaitsgory defined a category oftempered‐modules on that is conjecturally equivalent to the category of quasi‐coherent (not ind‐coherent!) sheaves on . However, their definition depends on the auxiliary data of a point of the curve; they conjectured that their definition is independent of this choice. Beraldo has outlined a proof of this conjecture that depends on some technology that is not currently available. Here we provide a short, unconditional proof of the Arinkin–Gaitsgory conjecture.
more »
« less
- PAR ID:
- 10418038
- Publisher / Repository:
- Oxford University Press (OUP)
- Date Published:
- Journal Name:
- Bulletin of the London Mathematical Society
- Volume:
- 55
- Issue:
- 3
- ISSN:
- 0024-6093
- Page Range / eLocation ID:
- p. 1419-1446
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Kazhdan and Lusztig identified the affine Hecke algebra ℋ with an equivariant$$K$$ -group of the Steinberg variety, and applied this to prove the Deligne-Langlands conjecture, i.e., the local Langlands parametrization of irreducible representations of reductive groups over nonarchimedean local fields$$F$$ with an Iwahori-fixed vector. We apply techniques from derived algebraic geometry to pass from$$K$$ -theory to Hochschild homology and thereby identify ℋ with the endomorphisms of a coherent sheaf on the stack of unipotent Langlands parameters, thecoherent Springer sheaf. As a result the derived category of ℋ-modules is realized as a full subcategory of coherent sheaves on this stack, confirming expectations from strong forms of the local Langlands correspondence (including recent conjectures of Fargues-Scholze, Hellmann and Zhu). In the case of the general linear group our result allows us to lift the local Langlands classification of irreducible representations to a categorical statement: we construct a full embedding of the derived category of smooth representations of$$\mathrm{GL}_{n}(F)$$ into coherent sheaves on the stack of Langlands parameters.more » « less
-
We calculate the category of D D -modules on the loop space of the affine line in coherent terms. Specifically, we find that this category is derived equivalent to the category of ind-coherent sheaves on the moduli space of rank one de Rham local systems with a flat section. Our result establishes a conjecture coming out of the 3 d 3d mirror symmetry program, which obtains new compatibilities for the geometric Langlands program from rich dualities of QFTs that are themselves obtained from string theory conjectures.more » « less
-
Abstract We address a special case of a conjecture of M. Talagrand relating two notions of “threshold” for an increasing family of subsets of a finite setV. The full conjecture implies equivalence of the “Fractional Expectation‐Threshold Conjecture,” due to Talagrand and recently proved by the authors and B. Narayanan, and the (stronger) “Expectation‐Threshold Conjecture” of the second author and G. Kalai. The conjecture under discussion here says there is a fixedLsuch that if, for a given , admits withand(a.k.a. isweakly p‐small), then admits such a taking values in ( is‐small). Talagrand showed this when is supported on singletons and suggested, as a more challenging test case, proving it when is supported on pairs. The present work provides such a proof.more » « less