Abstract We elucidate the relationship between the threshold and the expectation‐threshold of a down‐set. Qualitatively, our main result demonstrates that there exist down‐sets with polynomial gaps between their thresholds and expectation‐thresholds; in particular, the logarithmic gap predictions of Kahn–Kalai and Talagrand (recently proved by Park–Pham and Frankston–Kahn–Narayanan–Park) about up‐sets do not apply to down‐sets. Quantitatively, we show that any collection of graphs on that covers the family of all triangle‐free graphs on satisfies the inequality for some universal , and this is essentially best‐possible.
more »
« less
On a problem of M. Talagrand
Abstract We address a special case of a conjecture of M. Talagrand relating two notions of “threshold” for an increasing family of subsets of a finite setV. The full conjecture implies equivalence of the “Fractional Expectation‐Threshold Conjecture,” due to Talagrand and recently proved by the authors and B. Narayanan, and the (stronger) “Expectation‐Threshold Conjecture” of the second author and G. Kalai. The conjecture under discussion here says there is a fixedLsuch that if, for a given , admits withand(a.k.a. isweakly p‐small), then admits such a taking values in ( is‐small). Talagrand showed this when is supported on singletons and suggested, as a more challenging test case, proving it when is supported on pairs. The present work provides such a proof.
more »
« less
- PAR ID:
- 10521322
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Random Structures & Algorithms
- Volume:
- 61
- Issue:
- 4
- ISSN:
- 1042-9832
- Page Range / eLocation ID:
- 710 to 723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The upper tail problem in a random graph asks to estimate the probability that the number of copies of some fixed subgraph in an Erdős‐Rényi random graph exceeds its expectation by some constant factor. There has been much exciting recent progress on this problem. We study the corresponding problem for hypergraphs, for which less is known about the large deviation rate. We present new phenomena in upper tail large deviations for sparse random hypergraphs that are not seen in random graphs. We conjecture a formula for the large deviation rate, that is, the first order asymptotics of the log‐probability that the number of copies of fixed subgraphHin a sparse Erdős‐Rényi randomk‐uniform hypergraph exceeds its expectation by a constant factor. This conjecture turns out to be significantly more intricate compared to the case for graphs. We verify our conjecture when the fixed subgraphHbeing counted is a clique, as well as whenHis the 3‐uniform 6‐vertex 4‐edge hypergraph consisting of alternating faces of an octahedron, where new techniques are required.more » « less
-
Abstract We study for bounded multiplicative functions sums of the formestablishing that their variance over residue classes is small as soon as , for almost all moduli , with a nearly power‐saving exceptional set of . This improves and generalizes previous results of Hooley on Barban–Davenport–Halberstam type theorems for such , and moreover our exceptional set is essentially optimal unless one is able to make progress on certain well‐known conjectures. We are nevertheless able to prove stronger bounds for the number of the exceptional moduli in the cases where is restricted to be either smooth or prime, and conditionally on GRH we show that our variance estimate is valid for every . These results are special cases of a “hybrid result” that we establish that works for sums of over almost all short intervals and arithmetic progressions simultaneously, thus generalizing the Matomäki–Radziwiłł theorem on multiplicative functions in short intervals. We also consider the maximal deviation of overallresidue classes in the square root range , and show that it is small for “smooth‐supported” , again apart from a nearly power‐saving set of exceptional , thus providing a smaller exceptional set than what follows from Bombieri–Vinogradov type theorems. As an application of our methods, we consider Linnik‐type problems for products of exactly three primes, and in particular prove a ternary approximation to a conjecture of Erdős on representing every element of the multiplicative group as the product of two primes less than .more » « less
-
Abstract A celebrated conjecture of Tuza says that in any (finite) graph, the minimum size of a cover of triangles by edges is at most twice the maximum size of a set of edge‐disjoint triangles. Resolving a recent question of Bennett, Dudek, and Zerbib, we show that this is true for random graphs; more precisely:urn:x-wiley:rsa:media:rsa21057:rsa21057-math-0001more » « less
-
Abstract Given a multigraph$$G=(V,E)$$, the edge-coloring problem (ECP) is to color the edges ofGwith the minimum number of colors so that no two adjacent edges have the same color. This problem can be naturally formulated as an integer program, and its linear programming relaxation is referred to as the fractional edge-coloring problem (FECP). The optimal value of ECP (resp. FECP) is called the chromatic index (resp. fractional chromatic index) ofG, denoted by$$\chi '(G)$$(resp.$$\chi ^*(G)$$). Let$$\Delta (G)$$be the maximum degree ofGand let$$\Gamma (G)$$be the density ofG, defined by$$\begin{aligned} \Gamma (G)=\max \left\{ \frac{2|E(U)|}{|U|-1}:\,\, U \subseteq V, \,\, |U|\ge 3 \hspace{5.69054pt}\textrm{and} \hspace{5.69054pt}\textrm{odd} \right\} , \end{aligned}$$whereE(U) is the set of all edges ofGwith both ends inU. Clearly,$$\max \{\Delta (G), \, \lceil \Gamma (G) \rceil \}$$is a lower bound for$$\chi '(G)$$. As shown by Seymour,$$\chi ^*(G)=\max \{\Delta (G), \, \Gamma (G)\}$$. In the early 1970s Goldberg and Seymour independently conjectured that$$\chi '(G) \le \max \{\Delta (G)+1, \, \lceil \Gamma (G) \rceil \}$$. Over the past five decades this conjecture, a cornerstone in modern edge-coloring, has been a subject of extensive research, and has stimulated an important body of work. In this paper we present a proof of this conjecture. Our result implies that, first, there are only two possible values for$$\chi '(G)$$, so an analogue to Vizing’s theorem on edge-colorings of simple graphs holds for multigraphs; second, although it isNP-hard in general to determine$$\chi '(G)$$, we can approximate it within one of its true value, and find it exactly in polynomial time when$$\Gamma (G)>\Delta (G)$$; third, every multigraphGsatisfies$$\chi '(G)-\chi ^*(G) \le 1$$, and thus FECP has a fascinating integer rounding property.more » « less
An official website of the United States government

