skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient pathway to NaCs ground state molecules
Abstract We present a study of two-photon pathways for the transfer of NaCs molecules to their rovibrational ground state. Starting from NaCs Feshbach molecules, we perform bound-bound excited state spectroscopy in the wavelength range from 900 nm to 940 nm, covering more than 30 vibrational states of the c 3 Σ + , b 3 Π , and B 1 Π electronic states. Analyzing the rotational substructure, we identify the highly mixed c 3 Σ 1 + | v = 22 b 3 Π 1 | v = 54 state as an efficient bridge for stimulated Raman adiabatic passage. We demonstrate transfer into the NaCs ground state with an efficiency of up to 88(4)%. Highly efficient transfer is critical for the realization of many-body quantum phases of strongly dipolar NaCs molecules and high fidelity detection of single molecules, for example, in spin physics experiments in optical lattices and quantum information experiments in optical tweezer arrays.  more » « less
Award ID(s):
1848466
PAR ID:
10418067
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
25
Issue:
5
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 053036
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic X ˜ 2 Σ + ( 010 ) state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the X ˜ 2 Σ + ( 010 ) state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of 174 YbOH using high-resolution optical spectroscopy on the nominally forbidden X ˜ 2 Σ + ( 010 ) A ˜ 2 Π 1 / 2 ( 000 ) transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the X ˜ 2 Σ + ( 010 ) state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the X ˜ 2 Σ + ( 010 ) state and fit the molecule-frame dipole moment to D m o l = 2.16 ( 1 ) Dand the effective electrong-factor to g S = 2.07 ( 2 ) . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited A ˜ 2 Π 1 / 2 ( 000 ) state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules. 
    more » « less
  2. Abstract Spin-flip (SF) methods applied to excited-state approaches like the Bethe–Salpeter equation allow access to the excitation energies of open-shell systems, such as molecules and defects in solids. The eigenstates of these solutions, however, are generally not eigenstates of the spin operator S ^ 2 . Even for simple cases where the excitation vector is expected to be, for example, a triplet state, the value of S ^ 2 may be found to differ from 2.00; this difference is called ‘spin contamination’. The expectation values S ^ 2 must be computed for each excitation vector, to assist with the characterization of the particular excitation and to determine the amount of spin contamination of the state. Our aim is to provide for the first time in the SF methods literature a comprehensive resource on the derivation of the formulas for S ^ 2 as well as its computational implementation. After a brief discussion of the theory of the SF Bethe–Salpeter equation (BSE) and some examples further illustrating the need for calculating S ^ 2 , we present the derivation for the general equation for computing S ^ 2 with the eigenvectors from an SF-BSE calculation, how it is implemented in a Python script, and timing information on how this calculation scales with the size of the SF-BSE Hamiltonian. 
    more » « less
  3. Abstract The best upper limit for the electron electric dipole moment was recently set by the ACME collaboration. This experiment measures an electron spin-precession in a cold beam of ThO molecules in their metastable H ( 3 Δ 1 ) state. Improvement in the statistical and systematic uncertainties is possible with more efficient use of molecules from the source and better magnetometry in the experiment, respectively. Here, we report measurements of several relevant properties of the long-lived Q ( 3 Δ 2 ) state of ThO, and show that this state is a very useful resource for both these purposes. TheQstate lifetime is long enough that its decay during the time of flight in the ACME beam experiment is negligible. The large electric dipole moment measured for theQstate, giving rise to a large linear Stark shift, is ideal for an electrostatic lens that increases the fraction of molecules detected downstream. The measured magnetic moment of theQstate is also large enough to be used as a sensitive co-magnetometer in ACME. Finally, we show that theQstate has a large transition dipole moment to the C ( 1 Π 1 ) state, which allows for efficient population transfer between the ground state X ( 1 Σ + ) and theQstate via X C Q Stimulated Raman Adiabatic Passage (STIRAP). We demonstrate 90 % STIRAP transfer efficiency. In the course of these measurements, we also determine the magnetic moment ofCstate, the X C transition dipole moment, and branching ratios of decays from theCstate. 
    more » « less
  4. Abstract The question of global existence versus finite-time singularity formation is considered for the generalized Constantin–Lax–Majda equation with dissipation Λ σ , where Λ σ ˆ = | k | σ , both for the problem on the circle x [ π , π ] and the real line. In the periodic geometry, two complementary approaches are used to prove global-in-time existence of solutions for σ 1 and all real values of an advection parameterawhen the data is small. We also derive new analytical solutions in both geometries whena = 0, and on the real line when a = 1 / 2 , for various values ofσ. These solutions exhibit self-similar finite-time singularity formation, and the similarity exponents and conditions for singularity formation are fully characterized. We revisit an analytical solution on the real line due to Schochet fora = 0 andσ = 2, and reinterpret it terms of self-similar finite-time collapse. The analytical solutions on the real line allow finite-time singularity formation for arbitrarily small data, even for values ofσthat are greater than or equal to one, thereby illustrating a critical difference between the problems on the real line and the circle. The analysis is complemented by accurate numerical simulations, which are able to track the formation and motion of singularities in the complex plane. The computations validate and build upon the analytical theory. 
    more » « less
  5. Abstract The sensitivity of urban canopy air temperature ( T a ) to anthropogenic heat flux ( Q A H ) is known to vary with space and time, but the key factors controlling such spatiotemporal variabilities remain elusive. To quantify the contributions of different physical processes to the magnitude and variability of Δ T a / Δ Q A H (where Δ represents a change), we develop a forcing-feedback framework based on the energy budget of air within the urban canopy layer and apply it to diagnosing Δ T a / Δ Q A H simulated by the Community Land Model Urban over the contiguous United States (CONUS). In summer, the median Δ T a / Δ Q A H is around 0.01 K  W  m 2 1 over the CONUS. Besides the direct effect of Q A H on T a , there are important feedbacks through changes in the surface temperature, the atmosphere–canopy air heat conductance ( c a ), and the surface–canopy air heat conductance. The positive and negative feedbacks nearly cancel each other out and Δ T a / Δ Q A H is mostly controlled by the direct effect in summer. In winter, Δ T a / Δ Q A H becomes stronger, with the median value increased by about 20% due to weakened negative feedback associated with c a . The spatial and temporal (both seasonal and diurnal) variability of Δ T a / Δ Q A H as well as the nonlinear response of Δ T a to Δ Q A H are strongly related to the variability of c a , highlighting the importance of correctly parameterizing convective heat transfer in urban canopy models. 
    more » « less